本题建立交对并运算的分配律。令[tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]、[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]和[tex=0.857x1.0]oXAqKViyEOXeAjRP4JQG3g==[/tex]为[tex=2.714x1.071]319e/AVA5VexfWBQXpJ9ug==[/tex]阶0-1矩阵。证明[tex=13.357x1.357]qTT9ohZSoF+wT3IvQFgnLA3fX6rr0ddvBcv46w0J+HfClbJlwcg6iPyYL6mbKfL7hB9bxoALl5g3RxDehXBx+OuEJAwYHm1TOhxr4aADyUpPBNlzhcPmjJFu7yx1KUx5sTTRHbck8uhixUlo+0Vl4MjDRMTUInNH/8UyA3PgjJVGabfTuLe8DBGQSqgsyWXf[/tex]
举一反三
- 本题建立交对并运算的分配律。令[tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]、[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]和[tex=0.857x1.0]oXAqKViyEOXeAjRP4JQG3g==[/tex]为[tex=2.714x1.071]319e/AVA5VexfWBQXpJ9ug==[/tex]阶0-1矩阵。证明[tex=13.786x1.357]qTT9ohZSoF+wT3IvQFgnLJslErFTSqvEJjJTW2B2HEpAx7HErAirvAM3rhMHCIlvHd5nMfpAVaW5CTuA8fI9gJ2j4N/ynM8KP3/cnuY03/Al9tNqNolMCpHGu4kjGPiqpNouL5aNHUMbvsXhS6Gv5w+Cgxi+WMaNkRd+zRKIFtluXVwphqpr2Ld/1SLQvC3F[/tex]
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9