设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴上方的曲线段的弧长
举一反三
- 设平面图形[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 由抛物线[tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 的面积
- 设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得旋转体的体积
- 求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$
- 求由曲线 [tex=3.571x1.429]s6y4nbp8lOZzc8r/0cAMvA==[/tex] 与直线 [tex=2.643x1.143]oNXWGMvz4WLNADv1hYPXSg==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成的平面图形的面积.
- 求由抛物线[tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和[tex=2.786x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]所围成的图形的面积.