举一反三
- 设平面图形[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 由抛物线[tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 的面积
- 设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得旋转体的体积
- 求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$
- 求由曲线 [tex=3.571x1.429]s6y4nbp8lOZzc8r/0cAMvA==[/tex] 与直线 [tex=2.643x1.143]oNXWGMvz4WLNADv1hYPXSg==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成的平面图形的面积.
- 求由抛物线[tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和[tex=2.786x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]所围成的图形的面积.
内容
- 0
求由抛物线 [tex=4.143x1.429]dTkdVqHpd014mTz65ErxtQ==[/tex]与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成的图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得到的旋转体体积.
- 1
利用定积分定义计算由抛物线 [tex=3.571x1.429]8suUoqX7B5g4vbS1HjuY+w==[/tex], 两直线 [tex=7.071x1.357]zspjMM07T4X0prAZLW+7HA==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成图形的面 积.
- 2
求由抛物线 [tex=3.571x1.429]x2ulPC9h41k0fVEnCwicBQ==[/tex] 与直线 [tex=2.429x1.0]iCWMESxH27wos2YIzODARQ==[/tex] 以及 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴在第一象限内围成的平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴旋转一周而成的旋转体的体积.
- 3
设[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]是曲线[tex=2.857x1.571]orm4v5pmotlzVdFInwDSoQFYkN1XI7NL2pVeNMGzUQY=[/tex],直线[tex=5.071x1.357]kxges0j/mnN49PxV5Zem0A==[/tex]及[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围成的平面图形,[tex=1.0x1.214]yaJ04YkYPNLWmsCICRQjvw==[/tex],[tex=0.929x1.286]Cy7+3pcXJKdUsysbxfmIBg==[/tex]分别是[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴旋转一周所得旋转体体积,若[tex=4.286x1.286]5NOTLnrhJhmv5Qp4zuEPP0bYlTeqabz5O5Vc5w1IQ9s=[/tex],求[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的值。
- 4
求旋转体的体积:曲线[tex=2.286x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]和[tex=3.571x1.429]x2ulPC9h41k0fVEnCwicBQ==[/tex]所围成的平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转而得的旋转体