举一反三
- 应用分部积分法求不定积分:[tex=5.0x2.143]E7Rbxmze3d4AYaxnx5Rg4nK1QdKTsBEQMEnePocfPag=[/tex]。
- 求不定积分[img=115x46]17da65382f8e1b9.png[/img]; ( ) A: x - (5*log(x + 1))/4 - (3*log(x - 3)) B: (5*log(x + 1))/4 - (3*log(x - 3)) C: x - (5*log(x + 1))/4 - (3*log(x - 3))/4 D: (5*log(x + 1))/4 - (3*log(x - 3))/4
- 求x^2/(1-x^2)^3的不定积分
- 求不定积分[img=121x54]17da653839aa6ae.png[/img]; ( ) A: log(x^2 + 3*x + 25/4)/4 + (5*atan(x/2 + 3/4))/4 B: log(x^2 + 3*x + 25/4)/4 C: (5*atan(x/2 + 3/4))/4 D: log(x^2 + 3*x + 25/4)/4 - (5*atan(x/2 + 3/4))/4
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
内容
- 0
中缀表达式23+((12*3-2)/4+34*5/7)+108/9对应的后缀表达式为( )。 A: 23 12 + 3 * 2 – 4 / 34 5 * 7 / + 108 9 / + B: 23 12 3 * 2 4 – / 34 5 * 7 / + + 108 9 / + C: 23 12 3 * 2 – 4 / 34 5 * 7 / + 108 9 / + + D: 23 12 3 * 2 – 4 / 34 5 * 7 / + + 108 9 / +
- 1
set1 = {x for x in range(10) if x%2!=0} print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}
- 2
set1 = {x for x in range(10) if x%2!=0} set1.remove(1) print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}
- 3
s=1/(1*3)-1/(3*5)+1/(5*7)-1/(7*9)+......-1/(99*101),编程求s的值并输出
- 4
已知[tex=10.786x1.357]oPxEQGciaJq0uWonaJqXssvTKx2aAMqoshLd51U2O4M=[/tex],若[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]相互独立,则[tex=3.0x1.357]cl60lRnHnAb2Fyha9FYNvw==[/tex] A: 1/2 B: 1/3 C: 2/3 D: 3/4