设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个非空集合,[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是由[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的所有子集构成的集合. 则集合的并是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]上的一个代数运算. 证明:[tex=2.571x1.357]Qo/21QJWXqSA3tYaf1moEA==[/tex] 是一个半群.
举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]和[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,则[tex=1.929x1.0]4N2Gd/QaTowBXzDJM8s54g==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系。
- 设集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中有[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个元素,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的二元关系有( )个,其中有( )个是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的函数。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]和[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的两个等价关系,试举例说明下面式子不一定是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系:[tex=2.214x1.143]amRoCfD8Yh3wsAyKIxYExA==[/tex]。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]和[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的两个等价关系,试举例说明下面式子不一定是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系:[tex=1.929x1.0]4N2Gd/QaTowBXzDJM8s54g==[/tex]。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的关系,构造[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的关系[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]如下:对于任意[tex=2.786x1.214]UUb6gXN+Pgi3z2iwygIXNA==[/tex],[tex=8.5x1.357]ZrPhw4AVgPUCh8CbjRl3lkyVRUYodt4NCPIQSBDHEZkbUNZqG7lwA3N0Qz1ds7aw[/tex]且[tex=3.571x1.357]4R81Ci1GZLtVgBX2kmc0lg==[/tex]要使得[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是等价关系,关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]必须满足哪些性质?