举一反三
- 利用关于单调有界数列极限存在的定理,证明以下各数列的收敛性:[br][/br][tex=15.143x2.786]ULAugtjOYQK+tBrizs5LR1hjz+QlTSiL6Q4HVs4m0iYT1lzn62NtJKwEECIQqv2NayAHEIkwqGeGDh8aa9oJGchWojNPyjphBGLOGS+zMbWBZHJ7eAggeERA+QGilhQ4[/tex]
- 利用关于单调有界数列极限存在的定理,证明以下各数列的收敛性:[br][/br][tex=10.214x2.429]d16fxmCSV3OgJaGsGHuHu0agK6ZmZfSuobd12gSm6R4/8XXYZWlc9x9Ai4ksfk5E4HMbKP10Z+WBcaJDm0rCj+jLpCkzR0uomF+0ylfzGZk=[/tex]
- 数列 >8、-3、5、0、1、-2、4、-1的中位数是0。( )
- 利用单调有界数列收敛准则证明下列数列的极限存在.[tex=10.143x2.429]PQFiji/X+PAXK5Mf5O9sysjL7nxlk8iGb2TkUn4RS04/yFW9ARVojzc5JrGVjglG[/tex].
- 数列8、-3、5、0、1、4、-1的中位数是
内容
- 0
试用定义1证明:(1) 数列[tex=2.357x2.786]YfOpfsXU462gw1PTp8mUhnyox9SPD+a41vcy562G3qQ=[/tex]不以 1 为极限[br][/br](2) 数列[tex=3.643x2.786]hn0grm0nFoK1+B+qN90oORmIO38IPAPRNvMSoSSLroY=[/tex]发散.
- 1
利用柯西准则,证明以下各数列的收敛性:[br][/br] 对于数列 [tex=6.429x1.357]cBjbtS+pT+EWSc/PKV+Fk2OTvWXBU30fSKkUCor+Qv8=[/tex], 若存在数 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex], 使得[br][/br][tex=23.857x1.357]WiudHel+CKjlqtaAVhIMg2eC15j9zNbVWaU/oYLoAXSZPAFpcbBRItx10o+t6fEjWRvWgiHowdHw0jQSAuca3gx1Yo0no3zebxrZE8atwJcg0FhRQxML+BmW9chsmbtLyX3NjVlgxYR2lFLZ7aHYwLHZ6osWp+em5CPdb1VVh1U=[/tex][br][/br]则称数列[tex=6.429x1.357]cBjbtS+pT+EWSc/PKV+Fk2OTvWXBU30fSKkUCor+Qv8=[/tex] 有有界变差.[br][/br]证明:凡有有界变差的数列是收敛的.举出一个收敛数列而无有界变差的例子.
- 2
利用单调有界数列必定收敛的性质,证明数列 [tex=14.214x1.5]UebQy5BR388uInyUKzqkBdtI1AbNJAT+28Uwk/h0GxJiAykX3Y5pCfRF6C+JClNC/tGWumr+p1njrUicGGwO4Q==[/tex] 收敛,并求出极限.
- 3
观察下列数列的极限是否存在,如果存在,求出极限(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
- 4
数列8、-3、5、0、1、4、-1的中位数是()。 A: 2 B: 1 C: 2.5 D: 0.5