已知[tex=2.0x1.286]cdFQTIcX/k6W15SnnVIOSQ==[/tex]为三阶对称矩阵且满足[tex=7.571x1.286]UftoPCbY1vsscBWCv7WWdWTmPBSQuX1bXssS0ZKFAo0=[/tex];其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为三阶单位矩阵 . 证明;(1)矩阵[tex=3.214x1.286]CxRh2MuWfyX9bh9PvBg47Q==[/tex]可逆,并求出[tex=4.929x1.286]UDCzTeZjplcUwcMi2zGvIfGEmkN+NtWm5jFlVbdJ7f4=[/tex];(2)若矩阵[tex=8.214x3.643]GGH5qazUqq7NUCYOcK6l4MoNKp6iMwMC6U8h1ew2xuMXF623jmjDH3Y+PeCZFHHxRawlm4maS6EPdXiK7Ep6RuByIf4EgILr6Js2A3n62/V5Gmr0XFZVgg/3HWGihKA9[/tex],求矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] .
举一反三
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 已知3阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为-1,1,2,求(1)矩阵[tex=5.571x1.286]OQw0X5RQo5/vziR0ICSSmg==[/tex]的特征值;(2)[tex=6.0x1.286]GiUfMyexR+ktDmrZJuZTGw==[/tex]。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。