计算广义定积分∫(+无穷,1)arctanx/(x^2)dx
举一反三
- 利用定积分的定义计算下列定积分定积分(0到1)2xdx(0到1)(x^2)dx(0到1)(e^x)dx利用定积分的几何定义说
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
- 定积分0到正无穷的∫1/(1+x^2)(1+x^a)dx,(a>0)
- 下列广义积分发散的是( )。 A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \) B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)