设函数f(x)=sin(x2)+e-2x,则f’(x)等于( );
A: cos(x2)+2e-2x
B: 2xcos(x2)-2e-2x
C: -2xcos(x2)-e-2x
D: 2xcos(x2)+e-2x
A: cos(x2)+2e-2x
B: 2xcos(x2)-2e-2x
C: -2xcos(x2)-e-2x
D: 2xcos(x2)+e-2x
举一反三
- 设∫f(x)dx=sin(x^2)+c,则f(x)= A: x^2cos(x^2) B: x^2sin(x^2) C: 2xcos(x^2) D: 2xsin(x^2)
- 函数f(x)=x 2 e -x2 ()。
- 下列可以作为线性规划约束条件的是 A: X2/1+X2/2=2 B: X₁+X₂=2 C: X2/1+X₂≤2 D: X₁+X2/2≥2
- 设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是: