一阶微分方程dy/dx=xcos(x^2)/y
一阶微分方程dy/dx=xcos(x^2)/y
设函数f(x)=sin(x2)+e-2x,则f’(x)等于( ); A: cos(x2)+2e-2x B: 2xcos(x2)-2e-2x C: -2xcos(x2)-e-2x D: 2xcos(x2)+e-2x
设函数f(x)=sin(x2)+e-2x,则f’(x)等于( ); A: cos(x2)+2e-2x B: 2xcos(x2)-2e-2x C: -2xcos(x2)-e-2x D: 2xcos(x2)+e-2x
求下列各函数的导数.(1)y=x2+1x-x;(2)y=xcos(2x).
求下列各函数的导数.(1)y=x2+1x-x;(2)y=xcos(2x).
不定积分:∫xcos^2xdx
不定积分:∫xcos^2xdx
∫sin^2xcos^4xdx求答案
∫sin^2xcos^4xdx求答案
设∫f(x)dx=sin(x^2)+c,则f(x)= A: x^2cos(x^2) B: x^2sin(x^2) C: 2xcos(x^2) D: 2xsin(x^2)
设∫f(x)dx=sin(x^2)+c,则f(x)= A: x^2cos(x^2) B: x^2sin(x^2) C: 2xcos(x^2) D: 2xsin(x^2)
证明:sin^4x+cos^4x=1-2sin^2xcos^2x
证明:sin^4x+cos^4x=1-2sin^2xcos^2x
设函数y=sin(x2-1),则dy=()。 A: cos(x2-1)dx B: -cos(x2-1)dx C: 2xcos(x2-1)dx D: -2xcos(x2-1)dx
设函数y=sin(x2-1),则dy=()。 A: cos(x2-1)dx B: -cos(x2-1)dx C: 2xcos(x2-1)dx D: -2xcos(x2-1)dx
函数y=sin(2x−5)x的导函数为y=2xcos(2x−5)−sin(2x−5)x2y=2xcos(2x−5)−sin(2x−5)x2.
函数y=sin(2x−5)x的导函数为y=2xcos(2x−5)−sin(2x−5)x2y=2xcos(2x−5)−sin(2x−5)x2.
y = xcos x在(-∞, ∞)内无界,故当时该函数为无穷大.
y = xcos x在(-∞, ∞)内无界,故当时该函数为无穷大.