计算抛物线[tex=2.786x1.429]Vn9Q0dVpU5jW+h5Owv0byA==[/tex]与直线[tex=2.643x1.143]BAOEIV5REu3kukdmfCQE7A==[/tex]及[tex=1.786x1.214]nl1W0/aSdnLF7IqR1Qns3Q==[/tex]围成区域的面积.
举一反三
- 由直线 [tex=2.286x2.357]bQB2s5lgGGBIKsJeQJRqfQ==[/tex] 与抛物线 [tex=2.786x1.429]ACKQQsei4y9ePqoXL8Psqg==[/tex] 所围成的图形绕直线 [tex=1.786x1.214]nl1W0/aSdnLF7IqR1Qns3Q==[/tex] 旋转,求旋转体的体积.
- 求由曲线和直线所围成的平面图形的面积:[tex=2.286x1.429]f0KdLlH9l+9WWJPSEUUoew==[/tex],[tex=2.786x1.429]M6XyC2DM8XRl7nyfJL1Gcw==[/tex]和[tex=1.786x1.214]nl1W0/aSdnLF7IqR1Qns3Q==[/tex]。
- 立体底面为抛物线[tex=2.786x1.429]tRvKBSaMjWqdxeUQAAO/tQ==[/tex]与直线[tex=1.786x1.214]nl1W0/aSdnLF7IqR1Qns3Q==[/tex] 围成的图形,而任一垂直于[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的截面都分 别是 :(1) 正方形; (2)等边三角行; (3)半圆形. 求各种情况下立体的体积.
- 求由pao物线[tex=2.786x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex] 及直线[tex=1.786x1.214]nl1W0/aSdnLF7IqR1Qns3Q==[/tex]所围成的均匀薄片(面密度为常数[tex=0.643x1.0]i247B8HtDhwV3KyhJOdFGA==[/tex])对于直线 [tex=2.571x1.214]zJ9Wp4VP2UGU8ac+ZgMoqw==[/tex]的转动惯量.
- 立体底面为抛物线[tex=2.286x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]与直线 [tex=1.786x1.214]nl1W0/aSdnLF7IqR1Qns3Q==[/tex]围成的图形,而任一垂直于轴的截面分别为(1) 正方形; (2) 等边三角形; (3)半圆形, 求对应情况下立体的体积