令P:3>-2;Q(x):x≤3;R(x):x>5;a:3;个体域{-2,3,5,6}; 则谓词公式∀x(P→Q(x))∨R(a)的真值= 。
0
举一反三
- 公式A=∃x(P(x)→Q(x))的解释I为:个体域D={2},P(x):x>3,Q(x):x=4,则A的真值为
- 假设个体域D={1, 2, 3, 4, 5, 6},P(x):x是偶数,Q(x):x>0 ,R(x):x>6则[img=60x22]17e446cee76fe2e.png[/img]的真值为1;
- 用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I(6)R(c)T(2)(4)I(7)Z(c)
- 请问谓词公式中(∀x)(P(x,y)→Q(x,y))∨R(x,y)有几个自由变元? A: 2 B: 3 C: 4 D: 5
- 用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I
内容
- 0
设P(),Q(),R()均为x的多项式,且P(x^3)+xQ(x^3)=(x^2+x+1)R()<br/>, 则这三个多项式P(),Q(),R()的公共根为(<br/>). A: x=1 B: x=0 C: x=-1 D: x=2
- 1
公式A=(∃x)(P(x)→Q(x))的解释 I 为:个体域D={2} ,P(x) :x>3, Q(x) :x=4 , 则 A 的真值为( )。 A: 1 B: 0 C: 可满足式 D: 无法判断
- 2
设个体域{1,2},谓词P(1)=1,P(2)=0,Q(1)=0,Q(2)=1,则∀x(P(x) ∨Q(x))的真值是1。
- 3
前提:∀x(P(x)→Q(x)),∃xP(x) ⇒∃xQ(x) (1)∀x(P(x) → Q(x)) 前提 (2) ∃xP(x) 前提 (3) P(c) (2), Es规则 (4)P(c)→Q(c) (1), Us规则 (5) Q(c) (3)(4), 假言推理I (6)∃xQ(x) (5), Eg规则 上述推理过程是否正确?
- 4
谓词公式(∀x(P(x)∨∃yR(y)))→Q(x)∧R(x)中量词∀x的辖域是 . A: P(x)∨∃yR(y) B: P(x) C: (P(x)∨∃yR(y))→Q(x) D: (∀x(P(x)∨∃yR(y)))→Q(x)∧R(x)