设随机变量\( X \)服从区间(0,2)上的均匀分布,则\(P(X^2>2) \)=()
A: $\sqrt2/2$
B: $\sqrt2$
C: $1-\sqrt2/2$
D: $1-\sqrt2$
A: $\sqrt2/2$
B: $\sqrt2$
C: $1-\sqrt2/2$
D: $1-\sqrt2$
举一反三
- 设随机变量服从区间(0,2)上的均匀分布,则$Y=X^{2}$在(0,4)上的密度函数为() A: $\frac{1}{3\sqrt{y}}$ B: $\frac{1}{\sqrt{y}}$ C: $\frac{1}{2\sqrt{y}}$ D: $\frac{1}{4\sqrt{y}}$
- 函数$f(x,y)=\sqrt{1+{{y}^{2}}}\cos x$在点$(0,1)$处的1次Taylor多项式为 A: $\sqrt{2}-\frac{1}{\sqrt{2}}(y-1)$ B: $\frac{\sqrt{2}}{2}+\frac{1}{\sqrt{2}(}y-1)$ C: $2\sqrt{2}+\frac{1}{\sqrt{2}}(y-1)$ D: $\sqrt{2}+\frac{1}{\sqrt{2}}(y-1)$
- 将[img=83x51]17de8a0fc777b0b.png[/img]表示为程序所能接受的表达式,正确的为 A: sqrt(pow(x, 2) / (pow(x, 2) + 1)) B: sqrt(pow(2, x) / (pow(2, x) + 1)) C: pow(sqrt(2, x) / (sqrt(2, x) + 1)) D: pow(sqrt(x, 2) / (sqrt(x, 2) + 1))
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- \( \int_0^1 {dx} \int_ { { x^2}}^x { { {\left( { { x^2} + {y^2}} \right)}^{ - {1 \over 2}}}dy} \) =( ) A: \( \sqrt 2 + 1 \) B: \( \sqrt 2 - 1 \) C: \( \sqrt 2 \) D: \( \pi \)