举一反三
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从 [tex=4.286x1.571]dLH4dnAsmyeDywcKghZwQyDLTiUD+F3eG0hmMN6BZuQ=[/tex] 问 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 取何值时,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的值 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 落在区间 (2,3) 的概率最大?
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 将一颗股子掷 3 次, [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]表示“掷出 6 点”的次数,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]取奇数值的概率.
- 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
内容
- 0
已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的联合概率分布为[img=840x92]178f2e157cdbead.png[/img]试求:(1)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布;(2) [tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex]的概率分布;(3) [tex=6.857x2.429]RqGV9tRUT6gh1TsLo9YXgRs6mochCT0I/f5RwmC1X0k=[/tex]的数学期望.
- 1
篮球运动员的投篮命准率为[tex=1.857x1.143]TyXkqh6IF66Mui2EMl+Amw==[/tex], 以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]表示他首次投中时累计已投篮的次数,写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布律,并计算[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]取偶数的概率.
- 2
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]在[tex=2.0x1.357]A3mAla62KbVasY+ZpQp/kg==[/tex]上服从均匀分布,现在对[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]进行 3 次独立观测,试求至少有 2 次观测值大于 3 的概率.
- 3
已知离散型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列为: [tex=17.929x1.357]ikQ9bj0jXqEsK0iZGG38patjGiNNp2skUum208IHQDrgM02liZ3vl6bkit9icGZY[/tex] 试写出 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数。
- 4
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。