设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从 [tex=4.286x1.571]dLH4dnAsmyeDywcKghZwQyDLTiUD+F3eG0hmMN6BZuQ=[/tex] 问 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 取何值时,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的值 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 落在区间 (2,3) 的概率最大?
举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]在[tex=2.0x1.357]A3mAla62KbVasY+ZpQp/kg==[/tex]上服从均匀分布,现在对[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]进行 3 次独立观测,试求至少有 2 次观测值大于 3 的概率.
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布为[img=693x79]1784887858a23ea.png[/img] 确定[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的值
- 随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]只取[tex=3.429x1.286]Nfjf4OzUYf0Xc6WmQOWncKFP1cLAEu9rAJG/2zcO154=[/tex]共三个值,并且取各个值的概率不相等且组成等差数列,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布.