设,,ABC为三个事件,且,AB相互独立,则以下结论中不正确的是()
A: 若P(C)=1,则AC与BC也独立.
B: 若P(C)=1,则A∪C与B也独立.
C: 若P(C)=0,则A∪C与B也独立.
D: 若C
E: 则A与C也独立.
A: 若P(C)=1,则AC与BC也独立.
B: 若P(C)=1,则A∪C与B也独立.
C: 若P(C)=0,则A∪C与B也独立.
D: 若C
E: 则A与C也独立.
举一反三
- 设 $A,B,C$ 为三个事件,则( ). A: 若 $A,B,C$ 相互独立,则 $A,B,C$ 两两独立 B: $A,B,C$ 两两独立,则 $A,B,C$ 相互独立 C: 若 $P(ABC)=P(A)P(B)P(C)$,则 $A,B,C$ 相互独立 D: 若 $A$ 与 $B$ 独立,$B$ 与$C$ 独立,则 $A$ 与 $C$ 也独立.
- A,B,C为三个事件,若P(ABC)=P(A)P(B)P(C),则A与B相互独立.
- 若事件A与B相互独立,则A与也相互独立。
- 若A与B相互独立,且P(A)>0,P(B)>0,则下面不相互独立的事件是( )
- 若事件A与B 独立,则A c与B c也独立。( )