求下列各题中平面图形的面积:曲线[tex=6.714x1.5]tBQ/MXnXWyCCzyh8uuQIlu8iAxfM0SvLd0RwfF/R3PA=[/tex]与[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]轴所成的图形
举一反三
- 求下列各题中平面图形的面积:曲线[tex=5.357x1.429]wQPXYSIJwOU1MdopvUfVDiFKgQJWBr29WPScGtNhEnU=[/tex]在[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]轴上介于两极值点间的曲边梯形.
- 过曲线[tex=5.929x1.429]RlC/s2KaCRBvmwZxq80La7tQ2AlXnOpt//xp9b/Jb6vSXyD4/QFY/+Aa7saPft9t[/tex]上的点A作切线,使该切线与曲线即[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]轴所围成的平面图形D的面积[tex=0.643x1.0]YLjCNu3b8a8IkTrD4ZcqaA==[/tex]为[tex=0.786x2.357]fHSAQWp+6ONRh1qOoW/v+GgZ1WVjLjeaGc3XO+hBshg=[/tex].(1)求点A的坐标;(2)求平面图形绕[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]轴旋转一周所得旋转体的体积.
- 求下列平面图形分别绕[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]轴、[tex=0.5x1.0]2tEhsQT7NQ6+A9wOxtVs5g==[/tex]轴旋转产生的立体的体积.曲线[tex=2.786x1.357]MDPSDlMtknM6QeLKB1oZREUNP58h2D6IZ8eBe1/lDAs=[/tex]与[tex=6.357x1.214]pzfOAV1UzGcSM3BzAbrYvUztJENL4Qn6nCwRLAwb5CM=[/tex]所围成的图形.
- 求下列平面图形的面积:由曲线[tex=3.571x1.357]bEyILcMuT1VC2p23Q9I3pw==[/tex]与直线 [tex=4.571x2.357]bhX3kjd7sJuvbaYvcvJihW1yucvmdFDUXB/9no5CxDI=[/tex]和[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围成的平面图形.
- 求下列各题中平面图形的面积:曲线[tex=2.286x1.429]2eFjrBxNjEyfbo22K4A63A==[/tex]与直线[tex=3.571x1.214]H87qjl0nAaNUBvqOXaDapw==[/tex]1所围成的图形.