在机器学习中,如果一味的去提高训练数据的预测能力,所选模型的复杂度往往会很高,这种现象称为过拟合。所表现的就是模型训练时候的误差很小,但在测试的时候误差很大,对于产生这种现象以下说法正确的是( )。
A: 模型太复杂
B: 模型太简单
C: 样本数量过多
D: 样本数量太少
A: 模型太复杂
B: 模型太简单
C: 样本数量过多
D: 样本数量太少
举一反三
- 如果一味的去提高训练数据的预测能力,所选模型的复杂度往往会很高,这种现象称为过拟合。所表现的就是模型训练时候的误差很小,但在测试的时候误差很大。( )
- 下面关于过拟合的原因中,错误的是哪个? A: 样本太少会导致过拟合 B: 样本太多会导致过拟合 C: 模型太复杂会导致过拟合 D: 训练集中包含测试集样本,会导致过拟合
- 在机器学习中,如果数据较少,同时采用的模型较复杂,得到的模型在给定的训练集上误差非常小,接近于0,但是在训练集之外的数据上预测效果很差,这种现象称为( )。 A: 欠拟合 B: 过拟合 C: 损失函数 D: 经验风险
- 关于过拟合说法不正确的是 A: 如果一味追求提高对训练数据的预侧能力,所选模型的复杂度则往往会比真模型更高。 B: 过拟合是指学习时选择的模型所包含的参数过多,以致于出现该模型对己知数据预测得很好,但对未知数据预测很差的现象 C: 对训练数据的预侧能力较高,模型的复杂度一定较高 D: 解决过拟合现象的一种方法是正则化
- 如果模型学习的特征很少,容易造成训练误差很大,这种现象称为______。 A: 泛化 B: 鲁棒性 C: 欠拟合 D: 过拟合