设A,B是n阶矩阵,则下列结论正确的是 ( )
A: AB=O<=>A=O且B=O
B: |A|=0<=>A=O
C: |AB |=0<=>|A|=0或|B|=0
D: A=E<=>|A|=1
A: AB=O<=>A=O且B=O
B: |A|=0<=>A=O
C: |AB |=0<=>|A|=0或|B|=0
D: A=E<=>|A|=1
C
举一反三
- 设A,B是n阶矩阵,O为n阶零矩阵,则下列正确的是( ) A: AB=O⟺ A=O且B=O B: A=O⟺ |A|=0 C: |AB|=0⟺ |A|=0或|B|=0 D: |A|=1⟺ A=E
- 设A与B均为n阶矩阵,则下列结论中正确的是 A: 若|AB|=0,则A=O或B=O B: 若|AB|=0,则|A|=0或|B|=0 C: 若AB=O,则A=O或B=O D: 若ABO,则AO或BO
- 设A、B为n阶方阵,且AB=O(零矩阵),则______ A: A=O或B=O B: A+B=O C: |A|+|B|=0 D: |A|=0或|B|=0
- 设 $A,B$ 是 $n$ 阶方阵,且满足 $AB=O$,则必有( ). A: $A=O$ 或 $B=O$ B: $A+B=O$ C: $|A|=0$ 或 $|B|=0$ D: $|A|+|B|=0$
- 设A,B是n阶方阵,满足AB=O,则必有 ( ) A: A=O或B=O B: A+B=O C: |A|=0或|B|=0 D: |A|+|B|=0
内容
- 0
设A、B均为n阶矩阵,满足AB=O,则必有( ) A: A|+|B|=0 B: R(A)=R(B) C: A=O或B=O D: A|=0或|B|=0
- 1
设A和B均为n阶方阵,且AB=O,则必有 。 A: A=O或B=O B: A≠O,则B=O C: |A|=0或|B|=0. D: |A|+|B|=0
- 2
若A,B均为n阶方阵,且AB=0,则______ A: A=O或B=O B: A+B=O C: |A|=0或|B|=0 D: |A|+|B|=0
- 3
设 \( A,B \)均为 \( n \)阶方阵,则 \( A = O \)的充要条件是( ) A: \( {A^2} = O \) B: \( \left| A \right| = 0 \) C: \( B \ne O \)且\( AB = O \) D: \( \left| B \right| \ne 0 \)且\( AB = O \)
- 4
设A,B均为n阶方阵,则() A: 若|A+AB|=0,则|A|=0或|E+B|=0 B: (A+B)^2=A^2+2AB+B^2 C: 当AB=O时,有A=O或B=O D: (AB)^-1=B^-1A^-1