设$f(x)=x^2$,$g(x)=2^x$, 那么 $f \circ f \circ g=$
A: $2^{x^4}$
B: $2^{4x}$
C: $x^{2^{2x}}$
D: $x^{2^{x^2}}$
A: $2^{x^4}$
B: $2^{4x}$
C: $x^{2^{2x}}$
D: $x^{2^{x^2}}$
举一反三
- F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
- 已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)
- 【单选题】设 f ( 1-cos x ) =sin 2 x, 则 f ( x ) = A. x 2 +2x B. x 2 -2x C. -x 2 +2x D. -x 2 -2x
- 若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
- 下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)