证明 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实正规方阵是两个实对称方阵之积.
举一反三
- 如果把实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵按合同分类, 即两个实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵属于同一类当且仅当它们合同. 证明每个实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵属于也仅属于一类. 试问共有几类?
- 设[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex]表示[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的附属方阵,证明:[tex=5.786x1.357]cRSSutUe8lxP7o+KrExJjIlQDv25D1qSOdQh99TznTk=[/tex],其中[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]也是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵。
- 适合[tex=6.857x1.571]y4o+Jlrt5+5RlR42veSixfbnkGPkjFKH0x01hA5OFQI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]称为正交的,证明:正交方阵的行列式等于[tex=1.286x1.143]tkm29yuKKtwOsgBeQx8hOw==[/tex]。
- 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。
- 证明:设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]不可逆,则存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零的方阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],使得[tex=2.786x1.0]vO6oJG3HrH4S8DSEg9aQaQ==[/tex]。