如果把实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵按合同分类, 即两个实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵属于同一类当且仅当它们合同. 证明每个实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵属于也仅属于一类. 试问共有几类?
举一反三
- 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。
- [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵按合同分类, 共有 [input=type:blank,size:6][/input]类.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。
- 设 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵. 试证 [tex=0.786x1.0]VCFC+VP8w+sMJeRvvNnjBw==[/tex] 为正定矩阵当且仅当对任何正定 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 及实数 [tex=9.714x1.286]oUHjocG8NyrFpz5xluPGjVBwMqdo0SsQbqcFfRrPl5De1mcdBqGoXCbTQU2+CJKBWCubJ4DGp1EJ8LN1Lp9fGQ==[/tex], [tex=3.5x1.214]OwSXGS2Xb/MLUGvk44HeeUvDzEABepl8Va4Fc3Yyq5w=[/tex] 是正定矩阵.
- 如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]满足[tex=3.571x1.429]c5Cf4pRARaBipYntugL/3kWzFBMtOu9hHfk8QjSjCP9p2vY2mfUTmWQYcFK6ZcYR[/tex]证明[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]一定是单位矩阵.