• 2022-06-29
    适合[tex=6.857x1.571]y4o+Jlrt5+5RlR42veSixfbnkGPkjFKH0x01hA5OFQI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]称为正交的,证明:正交方阵的行列式等于[tex=1.286x1.143]tkm29yuKKtwOsgBeQx8hOw==[/tex]。
  • 证:[tex=28.071x1.571]V1D753We7vezsBlKQyfrUtT9kbr6odGVSJn/q25qhjOjTPndzR6zKahowjMfYn5uiecZdzsBYhsR+svLUG12+74fXmu9kiZF3EE9345B7uA4HEPhkRSTqHFhzLQyt3y9ytfZVoqFzx8mTqdb1l5IME4J1LkJKculgGDYW1XnMTLv0Pq6DkiJ9SvYAn4KRV+sV3Z2Q6Q5HR4qW6GOyoY8Dy8/OG9so9+hTlC2MnYEp+/OMIreTbkbj1UrmLMb8NdfzMWT6emelZ8sfNM4jkKOJQ==[/tex]

    举一反三

    内容

    • 0

      证明:设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]不可逆,则存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零的方阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],使得[tex=2.786x1.0]vO6oJG3HrH4S8DSEg9aQaQ==[/tex]。

    • 1

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 证明:[tex=5.429x1.929]cRSSutUe8lxP7o+KrExJjIlQDv25D1qSOdQh99TznTk=[/tex]

    • 2

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,证明 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正交阵的充要条件是 [tex=1.143x1.071]dlHppezehhhJt6WmQH9aoA==[/tex] 为正交阵.

    • 3

      如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。

    • 4

      设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 满足 [tex=2.714x1.214]+ZPJntj7xYfllBYE3zVGBw==[/tex],证明(1)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆;(2)[tex=9.786x1.357]06AJfdzBDu7SdZ9anbGLIPmuCvp8KJZXpIhBloDxMHk=[/tex] .