适合[tex=6.857x1.571]y4o+Jlrt5+5RlR42veSixfbnkGPkjFKH0x01hA5OFQI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]称为正交的,证明:正交方阵的行列式等于[tex=1.286x1.143]tkm29yuKKtwOsgBeQx8hOw==[/tex]。
举一反三
- 适合[tex=6.857x1.571]y4o+Jlrt5+5RlR42veSixfbnkGPkjFKH0x01hA5OFQI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]称为正交的,证明:位于正交方阵的[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个行上的所有[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]阶子式的平方和等于1,[tex=5.857x1.214]I5SGjTr5mzU5Ceq/sb8fsMww7wbMal8t8RY5w2pUkfk=[/tex]。
- 设[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex]表示[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的附属方阵,证明:[tex=5.786x1.357]cRSSutUe8lxP7o+KrExJjIlQDv25D1qSOdQh99TznTk=[/tex],其中[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]也是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵。
- 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 满足 [tex=3.429x1.357]NW79iFfJTlsydH9/AAtyCKvH0wgzaYujcWhDbZkUghY=[/tex], 则称为正交矩阵. 证明: 不存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 满足 [tex=5.857x1.357]Qg1OcQHVXCik8ADiEtZwP8gM0TtvjvHOo32HB7nB3dM=[/tex], 其中 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 是非零常数.
- 适合[tex=2.786x1.214]5YJ7IJv26przrQ/Z5urQMQ==[/tex]的方阵称为对称方阵。证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对称方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的乘积[tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]为对称方阵的充分必要条件是,方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可交换。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.