\( y = {x^2},\;y = x \)围成的平面图形面积\( A \)为( )。
A: \( {1 \over 2} \)
B: \( {1 \over 6} \)
C: \( {1 \over 3} \)
D: 1
A: \( {1 \over 2} \)
B: \( {1 \over 6} \)
C: \( {1 \over 3} \)
D: 1
举一反三
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 由\( y = {1 \over x},\;y = x,\;x = 2 \)围成的平面图形面积为( )。 A: \( {3 \over 2} \) B: \( \ln 2 \) C: \( {3 \over 2} - \ln 2 \) D: \( {3 \over 2} + \ln 2 \)
- 已知\( y = \ln (1 + {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {1 + {x^2}}} \) B: \( {x \over {1 + {x^2}}} \) C: \( {1 \over {1 + {x^2}}} \) D: \( { { {x^2}} \over {1 + {x^2}}} \)
- 下列函数中,( )不是方程\( xy' + y - x^2 = 0 \)的解。 A: \( y = { { {x^2}} \over 3} + {1 \over x} \) B: \( y = { { {x^2}} \over 3} \) C: \( y = { { {x^2}} \over 3} + 2 \) D: \( y = { { {x^2}} \over 3} - {1 \over x} \)
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)