1732 年著名数学家欧拉说:我从一个优美的定理推出某一结果,我虽不会证明它,但我肯定它是正确的:若[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]和[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]均不能被素数[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]整除,则[tex=2.714x1.143]fClm89WZ3a9e2+QUOMXk8Q==[/tex]可被 [tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]整除. "试证之.
举一反三
- 用 3 种方法(真值表法,等值演算法,主析取范式法)证明下面推理是正确的. 若 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是奇数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 不能被 2 整除.若[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是偶数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 能被 2 整除.因此,若[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是偶数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]不是奇数.
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是单位向量,证明 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex] 平分 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的夹角.
- 用真值表法和主析取范式法证明下面推理不正确. [br][/br] 如果[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积是负数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]中恰有一个是负数.a 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积不是负数.所以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 都不 是负数.
- 下列命题中正确的是( ). 未知类型:{'options': ['任意[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]维向量线性相关', '任意[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]维向量线性无关', '任意[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]维向量线性相关', '任意[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]维向量线性无关'], 'type': 102}
- 以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 为边作平行四边形,试用 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 边上的高向量.