用真值表法和主析取范式法证明下面推理不正确. [br][/br] 如果[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积是负数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]中恰有一个是负数.a 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积不是负数.所以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 都不 是负数.
举一反三
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是单位向量,证明 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex] 平分 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的夹角.
- 以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 为边作平行四边形,试用 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 边上的高向量.
- 以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]为边作平行四边形,试用[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]边上的高向量.
- 设有非零向量[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex],如果 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=2.214x1.143]0r4yD2FUhMBrZI0Ja3cQ+A==[/tex],[tex=4.643x1.357]mYudu4hCS+Lfb4CA1kmzuk0JsvuG1VzazALUYw0OIQ8=[/tex] 共面,问[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]有什么关系?
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是大于零的整数,[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是大于 2 的整数,则 [tex=7.357x1.571]WcvLmKecMuDj64FktYOTH6aTG7vpVHvntDxOOrxvN9//4tajiYibkdRgBDWmEC3kMZdlqMj8AbCshH52dMaKPg==[/tex]