方阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]如果满足[tex=2.357x1.214]oRmt9c0CsPgEyZLFtQKdVg==[/tex],那么称[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对合矩阵.证明:(1)如果[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对合矩阵,且[tex=4.714x1.357]D74gP9jezXZXFr8fqUm7RQ==[/tex],那么[tex=5.357x1.214]2mqnri314gFBeiyyB+TjEA==[/tex]都不可逆;(2)如果[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是对合矩阵,且[tex=3.429x1.357]sq+tWHki5dzgpkJQwGJSzw==[/tex],那么[tex=2.0x1.143]VSG5gqt8BBxdUnKNWW7jWQ==[/tex]不可逆.
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=3.429x1.357]KfxiXgR+wZCad+SOlQefBQ==[/tex],那么-1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]得一个特征值。
- 证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是上三角矩阵,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对角矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的主对角元为1或-1.
- 证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正定矩阵,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级半正定矩阵,那么[tex=2.286x1.143]7OI9Dpqsob5Abz33m0rKpw==[/tex]是正定矩阵。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶可逆矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]相似于[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],试证:[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为可逆矩阵
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].