举一反三
- 设随机向量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合概率分布[tex=36.643x1.357]WSh0HWPdVHtO/QNDYp1wrOh+cEP2AuQ37qt6XKvbi94BZXaT5fmgChqCioZ2cY6JEtNYUzBup0QpM67K3FYCAk2EZPsuKrZ99BMrv1sY0vEKP5iQOkHAyUivPMH7l9KR[/tex] 判断[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 设二连续型维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 在区域 [tex=14.571x1.357]9fE01Hil9hywFhfPvFDtLHRBcZKZpIwEqw52mh/FuSI=[/tex] 内服从均匀分布,试求 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布函数及边缘分布函数,判断随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的独立性.
- 随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合分布为:[img=632x199]1790818229f1f32.jpg[/img]写出关于[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]及关于[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的边缘密度函数
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的分布律为[img=213x108]1788c79a85ec2ac.png[/img]试求 : [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立, 为什么?
- 服从均匀分布,求[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合概率密度及边缘概率密度,并判定随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否相互独立.
内容
- 0
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 1
将一颗骰子连掷两次, 令 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为第一次掷出的点数, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为两次掷出的最大点数,求 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布和边缘分布.
- 2
假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 3
设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是相互独立的随机变量,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从[tex=2.786x1.357]OTYWB6XVLni5IZIVcA8qkw==[/tex]上的均匀分布, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]服从参数为5的指数分布,求[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数及[tex=4.214x1.357]G62iUTFYkjak3vaXox6vtw==[/tex]。
- 4
设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=13.214x3.643]s59y2K1bDNChzmHwfrn1oa1pF1t9i55DnlSuYaIvQnQi0naK6GjIdZ7iQEwWX5H2lPkg2lbQIKJXM4qLY0yfKA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数.