服从均匀分布,求[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合概率密度及边缘概率密度,并判定随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否相互独立.
举一反三
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是相互独立的随机变量,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从[tex=2.786x1.357]OTYWB6XVLni5IZIVcA8qkw==[/tex]上的均匀分布, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]服从参数为5的指数分布,求[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合密度函数及[tex=4.214x1.357]G62iUTFYkjak3vaXox6vtw==[/tex]。
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]
- 设随机向量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合概率分布[tex=36.643x1.357]WSh0HWPdVHtO/QNDYp1wrOh+cEP2AuQ37qt6XKvbi94BZXaT5fmgChqCioZ2cY6JEtNYUzBup0QpM67K3FYCAk2EZPsuKrZ99BMrv1sY0vEKP5iQOkHAyUivPMH7l9KR[/tex] 判断[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合分布为:[img=632x199]1790818229f1f32.jpg[/img]写出关于[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]及关于[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的边缘密度函数
- 设二连续型维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 在区域 [tex=14.571x1.357]9fE01Hil9hywFhfPvFDtLHRBcZKZpIwEqw52mh/FuSI=[/tex] 内服从均匀分布,试求 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布函数及边缘分布函数,判断随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的独立性.