设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]都是可数紧致空间。证明:积空间[tex=2.857x1.143]OBJvJRkGmR50oaHqcerUhA==[/tex]也是一个可数紧致空间。
举一反三
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]都是列紧空间。积空间[tex=2.857x1.143]o+gQvBuSt0uGsrjoYIWUug==[/tex]一定是列紧空间吗?给出你的结论并证明或举出反例。
- 举例说明当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为拓扑空间,[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]为满足第一或第二可数性公理的空间时,映射空间[tex=1.429x1.214]lx1EVEoaliACZj5tTCXYcQ==[/tex](紧致收敛的拓扑)可以不具有同一性质。
- 若仿紧空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一开子空间都是仿紧致的,证明[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一子空间都是仿紧致的。
- 拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为伪紧致的,如果对于任一连续映射[tex=6.571x1.357]QqFixYebT/bIENpOaCF+iOYIFpzQxTFHxwm4zQkZZEWoNPZ8j+8FX5pr7UM9yN0N[/tex]都是有界的。证明:度量空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致的当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是伪紧致的。
- 令[tex=4.071x1.214]DaoI4syGJkcEzXKIf1y1z+uK7N569Lk1j+3a0Z0WPb8m+/JkZsBmsuKzqaBCyXFk[/tex]为以[tex=10.643x1.357]Wjf5Gq3FufUFome735HGTSqJbTuVGm/erk08yEnieys7TlM4L0kHgkgrjVUB5frLFVlqR3mU4YxhrW/kBhOPOQ==[/tex]为基的[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的拓扑。证明[tex=2.857x1.357]Ig/6B5YCU59XfmLw5qBTgqJ9dwknLkRlo9GiCHHIPBw=[/tex]是列紧空间但不是可数紧致,紧致,序列紧致空间。