若lnx是函数f(x)的一个原函数,则f(x)的另一个原函数是().
A: ln(x+2)
B: 1/2lnx^2
C: ln2x
D: 1/aln|ax|
A: ln(x+2)
B: 1/2lnx^2
C: ln2x
D: 1/aln|ax|
C
举一反三
- 【简答题】若函数 f ( x ) = ax 2 + 2 x - ln x 在 x = 1 处取得极值. (1) 求 a 的值; (2) 求函数 f ( x ) 的单调区间及极值.
- 智慧职教: 已知lnx是函数f(x)的一个原函数,则f'(x)=( )。
- 4.下列各对函数中,是同一函数的原函数的是( ). A: $\arctan x$与$\text{arccot}x$ B: ${{\text{e}}^{x}}$与$\frac{1}{2}{{\text{e}}^{2x}}$ C: $\frac{{{2}^{x}}}{\ln 2}$与${{2}^{x}}+\ln 2$ D: $\ln (2x)$与$\ln x$
- 函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$
- 下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
内容
- 0
设函数f(x)=ln(3x),则f'(2)=() A: 6 B: ln 6 C: 1/2 D: 1/6
- 1
f(x)的一个原函数是lnx,则f'(x)=_____。
- 2
1.下列函数中,在定义域上无界的函数是 A: $f(x)=\frac{1}{x}\sin x$ B: $f(x)=x^2\sin \frac{1}{x}$ C: $f(x)=\frac{\ln x}{1+{{\ln }^{2}}x}$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}+{{\text{e}}^{-x}}}$
- 3
下列各选项中,函数相同的是( )。 A: \(<br/>f(x) = \ln {x^2},g(x) = 2\ln x \) B: \(<br/>f(x) = x,g(x) = \sqrt { { x^2}} \) C: \(<br/>f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \(<br/>f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
- 4
2. 已知$f(x)$的一个原函数是$\sin x$,$g(x)$的一个原函数是${{x}^{2}}$,则复函数$f[g(x)]$的原函数是( ). A: $\frac{\sin 2x}{2}$ B: ${{\cos }^{2}}x$ C: $\cos {{x}^{2}}$ D: $\cos 2x$