举一反三
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 某厂销售收入[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与利润[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的统计资料如表所示。[img=631x178]1790c8ce45dac14.png[/img]若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]有线性关系,试求出[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的线性回归方程。
- 若随机向量[tex=2.786x1.286]d8ZGztHRaPoTHI8v2JwIGQ==[/tex]服从二维正态分布,则①[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;②若[tex=3.5x1.286]sKaD0gq7ZfmqhDuxwY0565jK5tQQMeY1a44eA15r+0I=[/tex],则[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;③[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从一维正态分布;④若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立, 则[tex=6.143x1.286]1FUpcitV2qNzFaSobaOhNfKUbfF8QOwkW6yD2rc0W2g=[/tex],几种说法中正确的是 A: ①②③④ B: ②③④ C: ①③ D: ①②④
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
- 将一枚硬币重复掷[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]次,以[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]表示正面向上和反面向上的次数 . 试求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的关系系数[tex=1.857x1.286]18aD6kGj92O1KfxZXaz9PA==[/tex] .
内容
- 0
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的方差存在,证明:[tex=10.143x1.286]HG2ihwjcXTdzCTS/bC0QJsaC65j3BHkkW1/8B8OIxFg=[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关的充分和必要条件.
- 1
袋中有5个号码1,2,3,4,5,从中任取3个,记这3个号码中最小的的号码为[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],最大的号码为[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] .(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合分布律;(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立 .
- 2
设二维随机变量[tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]在圆域[tex=5.357x1.286]oOYTzm/NiJqJo4OjC55er1L5z17HiYuK5dHQrlDB2IM=[/tex]上服从均匀分布,(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex];(2)问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?
- 3
某厂销售收入[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与利润[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的统计资料如表所示。[img=631x178]1790c8ce45dac14.png[/img]问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否有明显的线性关系?简单说明理由。
- 4
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数为0.9,若[tex=5.357x1.286]KInZnoCtWuoav1ssc6RbWA==[/tex],则[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]与[tex=0.786x1.286]YmC97Clv6J6k2IyNV61eAw==[/tex]的相关系数为[input=type:blank,size:4][/input]。