举一反三
- 列举符合下列条件的函数:1)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]严格减少的奇函数;2)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]单调减少的偶函数;3)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]是偶函数、周期函数、且不存在单调区间;4)在 [tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex] 是奇函数、偶函数、单调函数、周期函数。
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
- 已知连续型随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率密度为[tex=11.286x2.429]U852yuhDf+y85IsGYXc4POR8uWvaHKELPrAqmR+nmZG8JwQvH0foTJhPAGSLnBQXqh5/UNFfVZeaD9Byq9v1KtCDtifjYmrT7J5EbhwNU4c=[/tex]求:(1)[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex];(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布函数[tex=2.071x1.286]QnT5Ukq2Ukk4CB2YYrq4eQ==[/tex];(3)[tex=5.429x1.286]gXKUDxSisNFST4SGeDeIwg==[/tex]。
- 设二维随机变量[tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]在圆域[tex=5.357x1.286]oOYTzm/NiJqJo4OjC55er1L5z17HiYuK5dHQrlDB2IM=[/tex]上服从均匀分布,(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex];(2)问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?
- 外源性凝血系统的启动因子是 未知类型:{'options': ['[tex=0.929x1.286]H6R7h9UQBlvh35vPXVt01g==[/tex]因子', '[tex=0.929x1.286]7rVFtJl5VsMXJkd2+DDbuw==[/tex]因子', '[tex=0.929x1.286]8L83t2pgoKvRz+nF+YxmLQ==[/tex]因子', '[tex=1.929x1.286]h4vsPcr29ubuNBid1Aea0g==[/tex]因子', '[tex=0.929x1.286]h4+f01yjhCy45YsclRU7hQ==[/tex]因子'], 'type': 102}
内容
- 0
假设总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从正态分布[tex=3.857x1.286]JrKs5T7u6pQoQQeeNFM4wlqVD1ToGDgfRW4wVkSybdVGmoWGoPoU2WN8LLOUhxlv[/tex],[tex=7.143x1.286]4bGv4GNhfHifuCST4hq27TUnKcULSEGkpmlzOaOCxYrgowoOfBw3l4O1C2q07+LX[/tex]是分别来自总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的简单随机样本,[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]和[tex=1.071x1.286]8wtfUF0L5fpTSa30/FBLZw==[/tex]为样本均值和方差.证明:(1)样本均值[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的数学期望[tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex]的有效估计量;(2)样本方差[tex=1.071x1.286]8wtfUF0L5fpTSa30/FBLZw==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的方差[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的渐近有效估计量;(3)未修正样本方差[tex=1.071x1.286]nBOWZJXhhOBIR+/HwFiAug==[/tex](二阶样本中心矩)是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的方差[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的渐近有效估计量.
- 1
设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从数学期望为150 , 方差为9的正态分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从数学期望为100,方差为16的正态分布,求[tex=7.5x1.357]JgfvMEzlJt4TFydcPQ2gaw==[/tex],[tex=10.286x1.357]/kMGdCxDBv+iw/Cr+hQeUnIAq7x/u//czEtqpBiPB/0=[/tex]。
- 2
8人围桌而坐,共有( )种坐法。 未知类型:{'options': ['[tex=0.786x1.286]MVt+NuC3cJNBccNt1+8d/w==[/tex]', '[tex=0.786x1.286]r1GH3pd3SN+buMvRAMBe6g==[/tex]', '[tex=1.214x1.286]RUedJ6LK4k0BnZek4fs84A==[/tex]', '[tex=0.929x1.286]4Gei/iZx8W+fyK9M9pT9KA==[/tex]', '[tex=0.929x1.286]FNzTJMLRX8eY5cNXIpkD3A==[/tex]'], 'type': 102}
- 3
在化合物[tex=3.143x1.214]v4ZSy342c4rYHJ17K2Seyg==[/tex]的质谱中, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]和[tex=2.286x1.143]6xy5cvv57RhdtLjINMq7Bw==[/tex]峰的相对强度比应为( ) A: 98. 9 : 1. 1 B: 98. 9 : 0. 02 C: 2 : 1 D: 1 : 1 E: 3 : 1
- 4
9判别下列函数是否是周期函数,若是周期函数,求其周期 :(1) [tex=8.357x1.357]jijpvC8Aw74QOOOJh5Va05j3PtA64Pms1Q5qDGlqeN4=[/tex](2) [tex=5.643x1.357]TG5DUF3HrCbhIJWDEcp5Pj9u3e2PUgpbN4NJQ6DZXLw=[/tex](3) [tex=5.714x1.357]SBxtvKszj8+jJcycMEKn5vqfhi5GLWqH4Gac9QRbIHc=[/tex](4) [tex=6.929x1.357]NZ5EVFRfE4pFsgkbEOhFkNg5/qZx8geAT5eL+yzbq1Q=[/tex]