• 2022-06-08
    设二维随机变量[tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]在圆域[tex=5.357x1.286]oOYTzm/NiJqJo4OjC55er1L5z17HiYuK5dHQrlDB2IM=[/tex]上服从均匀分布,(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex];(2)问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?
  • [tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]的密度为[tex=13.643x4.0]EPaISH7F+7OFqeEao9lVbRHesk4tplA2VrcCvwQ3rO15NU0inOU8Ej7J5J0O0X+6026iLBG/6+1FGFbWL+c0js0XgaLO+mALIvcT5kcejWekUPaph2mMUz1zCvFofGawJdCHjbf0kKeAJoqpHCsaxg==[/tex](1)[tex=23.071x5.929]p/LmBccH79Vj8rqS5G1ZOy51iTqLIc9j8LUcNIOxTyyYOP0SIG2AFehcsQaom7bcCNcLFy62lodJk66OIK5YBN3yOT2HnUDf0wD9oddoLekDAY90ULXyMnHsYHnbVcFlRwCYyKBFnq+P//slDRg+sec+LN9DOWh18TEyjNJJgT69thKonkh99/O/T1LxMs8BZ/zJbrzV3w3cdExzBxQuhDjdXyM/oajPhqw3HW2UqSuhjw2HPwJF0C5Yq4nJJA0EJGZES00/nnSuTu9kNvY/hwiVUac2Yeipns8TI5d4gpUhnRZ7Sy2NUupvmnLts9HLzKPhMB5RYfz2kU1/+PpHJxjN46o2CBzYjxuhxOIyFoWGKHcC+qS5N8jjEq+gnXDrUOnygEb7/hlY9nTvF8L894KVfsAUcmXSowzImOHUxy23+MD0SQ+3aLqmd1BCjbFM[/tex][tex=25.071x5.929]R9n6c/RURIwtMipm5fj2KdddA0YvCBmK56TBHRNMiCUTTsuFxDfQ79cirHes6I/vE5mIrubU6/gdUOS8eX+VfDltHQYYzWiM978sJng7OpLptA9zFYoif0kTt7QJivQwOcZCAZ9VTkZCFkLuoQR7uulgMm1/6GA7w/N3ZejihQz7in8MWJZjpGyYGa1nB6cy462K0nFV42dfEy/fIGtnSHRK+mLIS2YCNx+wwt487qkohgvBHRTY0mARqwKSdfCX6W3AQfxjQTWeJyarCWMqSPrloNP/cN40nMT81QMSR1Q9213hj3T2Hl0ExCVU6vcEGyoLxNT2a2W+JCeiG5cOlVig0BqCzibT8VrNcPhtozq4tM6KWaU+yeAdNRi0Q8Qc08a6sYTjAfJNgoS/wZ/ifVh/aPm4gB9QTy/gFc8M8TGvNfUYKMmnJySixjJuvCAk[/tex]故[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=2.286x1.286]xLAgZvW1e1DAKJ8ao5uOtA==[/tex](2)关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的边缘密度为[tex=23.857x8.857]7Kck5/+xhjQcWS3X0M1SfryiRG+4QY+MZV2BXjKJzxHIblYmgZyHp1rssvRLevAaIxpW48uqexOwI8SWQZyb67+xXs6f4018Wao652i/E3RW4uthQM+yGxNScWVvGd9dbX+Hrbi9n6E5VcAZ8B2DlcX1ChsAs7SOsfvdMs5Y+3p5rkTACTtDhWGgYiGEqAh8yP8ojbg+qUTze9IhkDgKGtXgvsrJj38aUTg3tOLgKgtKy3JpG0I6udj5pOs11xxrTHzcaDuLZ02BlgclPN5iMIVHwLYyT/3fCJoUnwloX0u1C2v08fqqwpJTUtJlfAYLXmGEIkIzld048y4Tkxu8sdWX92rhc+3Od/+a3QIMNugR839Mv/+KRS9clZjkfAID5BjZOcGs2xyN4GgR1h6VIw==[/tex]关于[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的边缘密度为[tex=13.929x4.929]FcMotNo5bGlE8clZFee4RohL1iHVOu5EaNEHioJh57ez7ErNxQWD2ZgDWi1exaL8v5jkpx33TSr0tw2JKWtidt+xJzatVQ38mZVk0ZjdPDBr2IDj41vxwLVlULgTVP7/k5HU9gjZWwDfPBtdixkrt+s59tx1lliwt+36AybjTQ2yjAPRxzj+R4SUhBaAMLfz[/tex]因为[tex=9.714x1.286]UKP5fTDWON0hVvjW/SqgN3poCPAIcHlHUqz2UQoo2EynJIvF6rDL+ZKIBqnwWDrX[/tex],所以[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不独立。

    举一反三

    内容

    • 0

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从区间[tex=1.929x1.286]iMAZ+4hDYSeldsmK7BlytA==[/tex]上的均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从[tex=2.357x1.286]AXVYg5COGe7fG0Iatqkkig==[/tex]的指数分布,且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,则[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的联合密度函数[input=type:blank,size:4][/input]。

    • 1

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从参数为[tex=3.286x1.286]PBtv7Mze0ABRtZ8Bf5DH5A==[/tex]的[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,而[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的均匀分布,证明随机变量[tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex]的概率分布仍然是均匀分布.

    • 2

      袋中有5个号码1,2,3,4,5,从中任取3个,记这3个号码中最小的的号码为[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],最大的号码为[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] .(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合分布律;(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立 .

    • 3

      设二维随机向量[tex=2.786x1.286]wsm6hZKLwoHLmpiSvjoPLA==[/tex]的联合概率密度为[tex=11.929x2.429]EPaISH7F+7OFqeEao9lVbWFvFTtp0jw27PSX4ey93+ocil6tIoqQAiW27sY9aEJATysk76yueULO0jcKgcds9A==[/tex](1)求[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]分别关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的边缘概率密度[tex=2.5x1.286]uu/ytNPk37vj04MgqWVXSQ==[/tex],[tex=2.429x1.286]vHFsKxNVPoBwN26UxM1ppg==[/tex];(2)判断[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]、[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立,并说明理由。

    • 4

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,当[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]均服从下列哪一类分布时,[tex=2.857x1.286]M8CfUJW+jYA1WLrqhqUtyg==[/tex]也服从同类分布 A: 二项分布 B: 均匀分布 C: 泊松分布 D: 指数分布