证明: (p∧q)→r,¬r∨s,¬s,p蕴含¬q 过程如下: 证明: ⑴ q P(附加前提) ⑵ ¬r∨s P ⑶ ¬s P ⑷ ¬r T⑵⑶I ⑸ (p∧q)→r P ⑹ ¬(p∧q) T⑷⑸I ⑺ ¬p∨¬q T⑹E ⑻ p P ⑼ ¬q T⑺⑻I ⑽ q∧¬q(矛盾) T⑴⑼I 以上证明方法是用归谬法,证明过程是正确的
举一反三
- 判断证明(p→q)∧(q→r)∧¬r=﹥¬p 的过程是否正确。 证明:⑴ p→q P规则 ⑵ q→r P规则 ⑶ p→r T⑴⑵I ⑷ ¬r→¬p T⑶E ⑸ ¬r P规则 ⑹ ¬p T⑷ ⑸I 所以¬p是前提p→q,q→r,¬r的有效结论
- 证明:(p∧q)→r,¬r∨s,¬s,p蕴含¬q过程如下:证明:⑴qP(附加前提)⑵¬r∨sP⑶¬sP⑷¬rT⑵⑶I⑸(p∧q)→rP⑹¬(p∧q)()
- 判断证明(p→q)∧(q→r)∧¬r=﹥¬p 的过程是否正确。 证明:⑴ p→q P规则 ⑵ q→r P规则 ⑶ p→r T⑴⑵I ⑷ ¬r→¬p T⑶E
- 推理证明下列各题的有效结论。 ⑴p→ (q∨r ), (t∨ s)→p,(t∨ s) q∨r ⑵p∧q, (p? q)→ (t∨ s) (t∨ s)
- 推理证明:(p→q)∧(r→s),(q→t)∧(s→u),Ø(t∧u),p→rÞØp