举一反三
- 给定两个正实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex],其算术均值是[tex=3.643x1.357]E3SAsO0Js6/Q26OpgLKMkA==[/tex]而其几何均值是[tex=2.0x1.429]ooy/2mxkWpK5zcfICT/jPQ==[/tex]。当比较不同正实数对的算术和几何均值时,可以发现算术均值总是大于几何均值。能否证明这个不等式恒为真?
- 利用谓词公式翻译下列命题。c) 存在实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 和[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex], 使得[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]与[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]之和大于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]与[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]之积。
- 在16个两变元[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的布尔函数中,有多少个能够用下列运算符、变元[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]以及值0和1来表示?[tex=1.286x1.357]wi9SzxAlLpK78aH0t+Y7JQ==[/tex]
- 利用谓词公式翻译下列命题。b) 对于每一个实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],存在一个更大的实数[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]。
- 用[tex=6.071x1.357]3dCJhua4/12EPCkOlhhWhA==[/tex]来定义实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的差[tex=1.857x1.143]NXIHmkBy86J2lDaZo1917A==[/tex],其中[tex=1.286x1.143]orTp9y4v0xhcSyRqTfUWhQ==[/tex]是[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的加法逆;并用[tex=5.5x1.357]WHktbrNsoQMHw5Cn96v/vbmuHM5gESHNWT/2On3otrI=[/tex]来定义商[tex=1.571x1.357]eeNHgIsRgLr40wTD0ku1VA==[/tex],其中[tex=4.143x1.357]dpqnpan2ip2xqu8uWDQilA==[/tex]是[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的乘法逆。证明对于所有实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex],有[tex=6.857x1.357]5W28RXVnDFQ+l5f5HMiIhg==[/tex]
内容
- 0
证明如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]是整数并且[tex=1.071x1.0]10CFjhXoBnEL0AdeGtum/Q==[/tex]和[tex=2.286x1.143]WT473J6iJyFLml9AmYU4qg==[/tex]均为偶数,则[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]也是偶数。
- 1
设谓语[tex=3.857x1.357]Aps4Q8oAqmn69d1q33EBpg==[/tex]表示“[tex=3.143x1.143]n6l6igOGcVl4jfXk2sxX8A==[/tex]”,谓语[tex=4.214x1.357]meFX4gJwXBDFAV2yciU/sA==[/tex]表示“[tex=2.357x1.0]4ie0tcy8g0kaLIyYjQnatA==[/tex]”,论述域是整数,用以上谓语表示下述断言:(a)对每一[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex],有一[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex],使[tex=3.143x1.143]n6l6igOGcVl4jfXk2sxX8A==[/tex]。(b)对每一[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex],有一[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex],使[tex=3.143x1.143]cBYYgzgOvdFjNZniEX+Ppg==[/tex].(c)从任何整数减去0,其结果是原整数。(d)对所有[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],对所有[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex],[tex=2.357x1.0]SNwATEsOpM9ar+WOb4zbqw==[/tex]。(e)存在一[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],对一切[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex],[tex=2.357x1.0]SNwATEsOpM9ar+WOb4zbqw==[/tex]。
- 2
下面的“证明”错在哪里?“定理”如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是实数,则[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]是正实数。“证明”令[tex=0.857x1.0]rEKpNtxe2g5BjOuuqHlSdw==[/tex]为“[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是正数”,[tex=0.857x1.0]2T0fdlSZutPzGA1HapWNSg==[/tex]为“[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是负数”,[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]为“[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]是正数”。要证明[tex=2.0x1.0]LXdn1N7FszIRO4ZxpsGvQA==[/tex]为真,注意当[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是正数时,[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]为正数,因为这是两个正数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的积。要证明[tex=2.357x1.0]R9VsDVKknphoBpRFtMw7rlixviYmfgOvDCURqfWXJbU=[/tex],注意当[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是负数时,[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]是正数,因为这是两个负数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的积。证毕。
- 3
设[tex=2.714x1.357]AyydKThGWuhLufX3R3V/hpcOkfwVst9LT3fIys6ScuE=[/tex]是模格,[tex=4.429x1.214]jjQpFPPwtxOZ8lc7ywXtAQ==[/tex],且[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex], [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]分别覆盖[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],证明[tex=2.286x1.143]z+DD0dY+JBIHoZyGATbJNA==[/tex]覆盖[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]。
- 4
证明存在无理数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]使得[tex=1.0x1.0]F9DMbeNbVCsd1ppPNI9KUw==[/tex]是有理数。