举一反三
- 过原点作曲线 [tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex] 的切线, 求由切线, 曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围平面图形, 分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 旋转所得旋转体的体积.
- 过原点作曲线[tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex]的切线,求切线、[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴及曲线[tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex]所围平面图形的面积.
- 求由抛物线 [tex=4.143x1.429]dTkdVqHpd014mTz65ErxtQ==[/tex]与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成的图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得到的旋转体体积.
- 设曲线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex], 过原点作其切线,求由该曲线、所作切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的平面图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转一周所得旋转体的表面积.
- 求摆线[tex=12.857x3.357]7EJHVCtO2IWq3KpdB+jQshKQOxbCXQe3UJWRVZc7cnvwK8nMSk9c9zDaBObJC4hXx4Tho1J3Ak2mqnIXAPkuoyLJjs4ngjCzMdeoyRhhqgX3OFu+dKllSpUExqFXosJRgngc8w1P6FccqmcN5paMDQ==[/tex],与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围成的图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转而成的旋转体体积。
内容
- 0
求 [tex=5.0x1.429]N4gzY2ZI5WeOBH70RVznSz4Jrf7oT9d6sVzr5xk+eH8=[/tex] 所围图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所成的旋转体的体积.
- 1
过曲线 [tex=5.429x1.5]hyPnTn+3TvS/y5P32FJC0/RtFN//zR51OT7wHuH1nRU=[/tex] 某点处 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 作切线,使之与曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形的面积为 [tex=1.714x2.357]eVdsEHeHDHCGLDq9Vddkb9uKCiAlrN0c3eeUvCGhVDU=[/tex](1) 求切点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的坐标及过 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的切线方程;(2) 求上述切线、曲线 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转成的旋转体体积.
- 2
设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得旋转体的体积
- 3
求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$
- 4
过曲线[tex=5.429x1.5]Sk1LHo1scb9wXW4lE6QCJA==[/tex]上某点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]作切线,使之与曲线及[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围图形的面积为[tex=1.286x2.357]iy7ZjKKJQIvT3NKLAZNJVw==[/tex](1) 求切点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的坐标及过点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的切线方程;(2) 求上述平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转的旋转体体积.