有内半径为[tex=1.857x1.286]t7T9sKoBgTGMbMd1j6Y/Nw==[/tex]的半球容器,其中盛满水,欲将水抽尽,求所作的功 ([tex=0.5x1.286]xchkYdkyGsHZyvcALOmunw==[/tex] 取 [tex=3.429x1.286]XJKNFzdQMaXaOB0P/jtnvXnGBBLjFGfpDWjp9+bqHFg=[/tex])。
举一反三
- 一矩形板垂直水面浸在水中,其底 [tex=1.357x1.286]SL4yKtCRGf69e5VUlVaVtg==[/tex], 高[tex=1.857x1.286]KxQz+o04BKKqlJhzVwA+UQ==[/tex], 上沿与水面平仅,并距水面[tex=1.357x1.286]8EXvWtqUcfNVwZuxY2yYMw==[/tex], 求矩形板的一侧所受的水压力([tex=0.5x1.286]xchkYdkyGsHZyvcALOmunw==[/tex]取[tex=3.429x1.286]XJKNFzdQMaXaOB0P/jtnvXnGBBLjFGfpDWjp9+bqHFg=[/tex])。
- 一圆柱形的容器高为[tex=1.357x1.0]0FjGkTQkYBhoOEuwBpJP1Q==[/tex], 底圆半径为 [tex=1.357x1.0]jl6ZnyMUVdkUvqVVlk35zQ==[/tex], 容器内盛满水, 若将其中的水全部抽出,需做多少功?
- 一长方体形状的容器,长[tex=1.857x1.286]ftkEFO9/EHFmbjJ/BDSbzA==[/tex],宽[tex=1.857x1.286]coQfE2UpYXcEDMFep4B19w==[/tex],深[tex=1.857x1.286]Ir8gdXnrDVdVkSLzCzp1ZA==[/tex] . 若容器盛满水,问把水从容器中全部抽出,需要做多少功?
- 一盛满水的直立圆柱形容器,直径为 [tex=1.357x1.0]b5gUAjX5dsgtBv7/Hdu6Hw==[/tex], 高为 [tex=1.357x1.0]WoZppFLMjWGjSHwoP1IV4A==[/tex], 其底上有一半径为 [tex=2.143x1.0]tiILGJsosqzEbZTnNy2czEo3/hxsr5fvgeZ+53qCpxw=[/tex] 的圆孔. 设水从小孔流出的速度与 [tex=1.5x1.357]ePjCxDdPLFj1ncS/7yTyXw==[/tex] 成正比,其中 [tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex] 为容器中水面的高要多少时间? 解 设 $t$ 时刻水面高度为 $h(t)$, 则水的体积为 $V(t)=4 \pi h(t)$, 在 $t$ 时刻的 $\mathrm{d} t$ 时 段内流失的水旺为
- 若x为自变量t,求[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex],设:[tex=2.571x1.214]Sv9aCsCkfQ4wl+tpfaNV0Q==[/tex]