• 2022-05-28
    应用有限覆盖定理证明闭区间连续函数的一致连续性。若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间 [tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex] 连续,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]一致连续。 
  • 证明 [tex=4.786x1.286]+09jyLQfx8W4YQMNxi+H2wqSOaOOPof7bJR3uaDVbLM=[/tex], 已知函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=0.643x1.286]vYiGJJ9TAtvnQmM1PsOB8g==[/tex]连续,即[tex=3.071x1.786]eeleRq4JzKmNCz0yjW4Y4vwATS+FkpB0WPZ09KGaBfQBVcPWnwKC0w2NoMjCfwcC[/tex],[tex=3.357x1.286]Ak5V7FpbQo0sWJG4fyE1vAS4q9pa/yTQYEccKRy49fo=[/tex], [tex=13.071x1.286]SH7A+cYsCDe1vTv5oHaL0K+5YjbXL8zqvRBneBuWjgYx4Rb0LGcuVok2rBczeOTb4k4iGQjkAyxwCTiaj0c8v+zeOgnsZMI+MEYk5bxr4kpEaH8psa+d+jarupCmW1gG[/tex], 有[tex=7.571x1.786]k2U71Er1+s3d+cuXsapH76eNvbLOMzw1E5SuPcnMfpCSFFGm7Czhpcmpw+BSsxhK[/tex]。于是[tex=15.357x1.286]VxNkxZC9l8K0oPx5FjehxUcAM2DtIijiH2ZvOdhSWq+xb3L9wzu4PpmpLrFdZwnbwsyedORmlX12ylH4BxooYWgoQjtDKh5L660uvIeNL0z6RRpYlnfIdOEMGEk4e5mtSEwMd6k5WjCTSpPyU2DrMg==[/tex], 即 [tex=12.143x1.286]3orpRvuL7HAtyCJZw1VvPJWLMG09ccCpdw+ub4VDs9NswT0/H1bsN8KIVU0hESXSw9QqHemmVUkeYg2j4rBQXuTAc0IcJgyBa0FD4zrKPR7TzVrLdLDBA43VPi4BP+c9[/tex], 有[tex=8.143x1.786]WoWZTqV1/T0ISNfvp4pdf356WWqY+24X56+Spby0xbSgem6WyJm7Ia+RUpxgW8ZSlVoEPKy1tn8jdc4XNHEjUlQnL3vlK6XAU4xmiwgf46A=[/tex] 与[tex=8.143x1.786]WoWZTqV1/T0ISNfvp4pdf9EejRHaXiDpQJvCmS3DFqPmV+tzWw3ACHC/DUlw88yRg61VJeAOf8bli7zZcY7sH0OJqsFUxGMHWBrjIO5HUQA=[/tex]。从而, [tex=14.143x1.286]WoWZTqV1/T0ISNfvp4pdf00uWgXF5ow50if09xNWwDnseTKu61QT81B1s3Dzaf1IvSc/EhHy/0AZaxXNy0CuNObLEHgGz6DjVC1kybx/HzZ6+jpNwrk3vaTxSTxzysloe2A0qEuJF8ujzQkw/2XMJQ==[/tex][tex=8.857x1.286]GKHS6abOKwr5mflRMq5i2ygc0SSTrCEjBNHe2uRf6I9Bn4fNJ81J0/d2gyVgt9BSAbACN3+z4XJPu8u4HJGX5Q==[/tex]。(1)将每个开区间 [tex=7.286x1.286]oekxFxqiMJWRoEf9k+AJHlIz0Ex06nju4gLki3x1e50BZuypuRYVoVRu7Jszg2TYUZlo2b5DRkWZ4yHMyzNppcvSSvrXH4J0sEn2mDl//+s=[/tex] 中的[tex=0.929x1.286]2BhoXEbTkkdTscJXYHhabX84TayI2g4hySKe3okQXSw=[/tex]缩小一半,得到开区间集:[tex=14.786x2.357]B+BDsSlVvkgEwsacTfh6LlG8kxUcaYPTxU7hwp9S1ImNsPwMDYWQlDxpi2TZezKOLlriEPQWifhBugECMW1iT/wjmdCuG8t/yBa1tOcGE8S1hle4DhMUlBNnLJ06Pzma8q1xZ4hVNN4wLKO31ORkHvYNUakJ3xYQCpXZ4Byv/T4=[/tex]这个开区间集覆盖闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex], 根据有限覆盖定理,存在 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个(有限个)开区间集[tex=19.429x2.357]B+BDsSlVvkgEwsacTfh6LuKWJfj0oS9PIuJhxbuU5viQ7lSU1VNjS6p1HX0nmRmlMb+jZJ0A3JSDLwIY8RoURadIoOkvFKZx+4NcTmdp8eH564DL4C/6glQNjgXHisw3/Qzp9PEJwz9iEoZlo0BwWP+xHkaEiKJdPHwHHZMGIJBgHTPdg3egyWshKMaBYsNgjWZ9tmr4GNP0DLzwPsZrhQ==[/tex]也覆盖闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]:[tex=16.571x2.357]Ak5V7FpbQo0sWJG4fyE1vCziMxDpIOho6f3IdLvEUoL2KMLVyOdOWcGgP6rvg+UhQ9vCEmnxxmI7DyYkdFQlV7Eapc/i9QzkYZsaUozRxfkoKAUSGInV1YVC5kUiGCtlCacOBtlbvLdgE3cHE53hGRIACzXI+4EMVrRYFKTaXh35B64II1vWhEEJ0UoWG4Yq[/tex]。下面证明这个[tex=0.5x1.286]Nn7ZLYgctvM1ZrwLyNFDJw==[/tex]就满足一致连续的要求。[tex=7.071x1.286]VxNkxZC9l8K0oPx5FjehxW3WXa7pn45fBm7tCxgACcmBAeQ7WPKzMBqdX492u1eQ[/tex], 且[tex=5.5x1.286]Gxk5Hz7mfRnXUeNAuoQWiF0kbLXgB7qBtNXOd8PH8TJgS7KVq1Tn9PUbS9cIL/nV[/tex], 设[tex=12.286x2.357]XohKEv6I/QlHSWlWPEJVU1ZepC8r3xtThWdiiFGi+KS8jJUT6VyaetLuHKGpuJgpp1alpACqDOdm7NK7M1dM5Ap9SNTnh4klLp/ozj+n1o0T6ptJ48yi1P7UJ8tjBY0vVH9BLjvy/r/H6ThqIL9syA==[/tex], 即 [tex=6.714x2.0]3orpRvuL7HAtyCJZw1VvPAmgxGHqkD+6AXtTvQARG1rtkKPCsmZ2Wy2+7IaAmkpFcv9xHPYHEaGIDY666OhYkg==[/tex], 从而有[tex=8.786x1.286]RE2+X8ClrfrCnHkcNV2tK1HFAsPydTBLQ53fDZr8mQTg7L8PCt/b3m6hDpSaCV478A/zd2fWfaXiSTZLjJQ5W+X7lxditLfRj2buPRhuAIY=[/tex][tex=10.286x2.0]Uas0G6JKlVCZ4Jv+78/0tafo7YqkKSsxd3eVBrr8tJUzIorkyh+JaGRWsml1bRidlWzSVExtU9dWFT/E8Ct72euW/e+wl4Z/BwDWOU5f5i3W/Q+wR6ZTKCDgRo2qJ9vf[/tex][tex=7.0x2.0]u0+AsE7mIQ+x9TIoDHjvM9gFoPG8Z7gjajKTRDzNul8wbdYxnQTNYO1fNzO3Kw8PJcodP+wW68F6jVoXSg7BrY2gNDXdySv9U1MWdRisCh8NrrqH3HrkC5RMJC+aZSJc[/tex]即[tex=11.214x1.286]Cykol/X6Js78eggVGVWx7zweHa6O0fHeI8ckPdKaRdiydCr5RQkFR2zWR8L+KXgd4V9eUIiWF29L5Zmha6JerqjRE4txjBYiwpWYy4rqfk7pCrlcm5upBzj6El3esH2m[/tex], 由(1)式,有[tex=8.5x1.286]WoWZTqV1/T0ISNfvp4pdf00uWgXF5ow50if09xNWwDnseTKu61QT81B1s3Dzaf1IzSe8I7S8RMN5UAud/yfN7P5vVE0Xhdm6hcrsDhY3JsY=[/tex]。于是,[tex=2.786x1.286]joguGSInidzw2xc+WzmvAZad/jjxgQdNyh+mayOOv3Y=[/tex],[tex=16.5x2.357]Ak5V7FpbQo0sWJG4fyE1vCziMxDpIOho6f3IdLvEUoL2KMLVyOdOWcGgP6rvg+Uh5AZi4JFitjHQYEJeyvqcdyBiaQn/5fk9y3mFfbY5Yw77j/DJmIgAj2VMoP770FscFBi4+x4eXrfzChNqGY4XTIrSNhM+iC6CdwnCTn5lpHUhxHusLWYfcL0IUPTnJ7/C[/tex],[tex=7.071x1.286]VxNkxZC9l8K0oPx5FjehxW3WXa7pn45fBm7tCxgACcmBAeQ7WPKzMBqdX492u1eQ[/tex]:[tex=5.5x1.286]Gxk5Hz7mfRnXUeNAuoQWiF0kbLXgB7qBtNXOd8PH8TJgS7KVq1Tn9PUbS9cIL/nV[/tex]([tex=1.0x1.286]ZoXlpUFWPWnrZtymZHQvJw==[/tex] 与[tex=1.0x1.286]w/OtJ66qGiAz/TyRXlfxoA==[/tex] 必属于某个开区间[tex=9.071x1.286]NmfwK4N8BJyI3mcswtpI0xR4swJw6D4cXBOLJUvSodL4yjU97Hu+qGnVyg5uootBM+zfUubb3pl83Tq/pAGcCsfcTqgwl9NVP7Jq1WQ/RTAdIpVuOzm5TCDbd3QBZYcu[/tex], 有[tex=8.5x1.286]WoWZTqV1/T0ISNfvp4pdf00uWgXF5ow50if09xNWwDnseTKu61QT81B1s3Dzaf1IzSe8I7S8RMN5UAud/yfN7P5vVE0Xhdm6hcrsDhY3JsY=[/tex],即函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex] 一致连续。

    举一反三

    内容

    • 0

      应用确界定理证明闭区间连续函数的零点定理。若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]连续, 且[tex=5.429x1.286]X7mu1bQAI43TOgCZSV94BZX8fXDFGukLQCTlsfQQ+aY=[/tex], 则在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex] 内至少存在点[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使[tex=3.571x1.286]pxO3RAw3vxt+S/M/HxOVvQ==[/tex]。

    • 1

      证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]可积,则函数 [tex=2.857x1.286]Sgpgmul/u9K+zCMt4I+NIZhyR7WwOf6O1bu2im+T4+w=[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]也可积。

    • 2

      若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上可积 ,[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]与[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上只有有限个点处不相等。 证明: [tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]上可积, 且[tex=9.929x2.5]14xDmLJt4isLwqieEHGEwMATzfZioF6Ob4kHyWKRwI02Boav6J2K5sD+vOo0ypJSc9qJazfEIftbkNdMx1C4Sw==[/tex]。

    • 3

      证明:若函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在闭区间[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]连续,且非常数,则函数值集合[tex=9.857x1.286]+YWw8+76uLmKb7sjJxqPMZk9Rv+3xHF8ynM5KnFh+AI5Q36AuEZ7hsUphGQdXHUF[/tex]是一个闭区间[tex=3.357x1.286]zq2KZ5WkFZOurpmm+n7+mQ==[/tex], 其中 [tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex] 与[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex] 分别是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的最小值与最大值。

    • 4

      证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与 [tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]连续,则函数[tex=10.786x1.286]oft7u4bm8J36KlCnLjxu4T+QPplOph1C5nRHIBwQK00=[/tex]与 [tex=10.571x1.286]FQWP0IoO+1FZLLkdaO8ZLFmEjUtE1Cz28PYCGsRzPkv4rZiEoVx2wLN/ykjFevsb[/tex]在[tex=2.429x1.286]AbdDkC0j55gBB/J+s1yOpw==[/tex]都连续(提示 :[tex=10.786x1.286]oft7u4bm8J36KlCnLjxu4T+QPplOph1C5nRHIBwQK00=[/tex][tex=13.214x2.0]F+ehlUHSlMNJnD9bwdvHfo9itw6nyR2Ckwecj7tiniXYoKfF17Y2geRgUijeJu4r[/tex]与  [tex=10.571x1.286]FQWP0IoO+1FZLLkdaO8ZLFmEjUtE1Cz28PYCGsRzPkv4rZiEoVx2wLN/ykjFevsb[/tex][tex=13.214x2.0]F+ehlUHSlMNJnD9bwdvHfvG3PZKFAjt1l/gZaejV46TnOBiN33vHENDkeZi5LZNr[/tex], 也可用连续定义证明)。