用改进的Euler法求初值问题:y'=exp(x)/(1+y),y(0)=1,取h=0.1,得到的y(0.2)的近似值=?
A: 1.0643
B: 1.10789
C: 1.11024
D: 1.13654
A: 1.0643
B: 1.10789
C: 1.11024
D: 1.13654
举一反三
- 用向前Euler法求初值问题:y'=x+2y-0.8,y(1)=1.2,取h=0.1,得到的y(1.3)的近似值=? A: 2.1784 B: 2.1603 C: 2.1625 D: 2.5879
- 取步长h=0.2,求解初值问题,用欧拉预报—校正法求y(0.2)的近似值。
- 如下命令中不能实现如下微分方程组[img=327x203]17e443a5d83ce02.png[/img],在初值条件[img=172x112]17e443a5e2ead01.png[/img]下的特解求解的是: A: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 't') B: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1, y(0)=0', 't') C: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0') D: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 'x')
- 求由方程[img=134x41]17da65377a0f91e.png[/img]所确定的隐函数[img=91x50]17da653782b7d9a.png[/img]的导数。 ( ) A: x*exp(y/x) B: x*exp(y/x)*(1/x + y/(x^2*exp(y/x))) C: x*exp(y/x)*(1/x + y/(x^2*exp(y/x)))+x*exp(y/x) D: (1/x + y/(x^2*exp(y/x)))
- 【单选题】设随机变量X和Y的分布律为P{X=0, Y=0}=0.1, P{X=0, Y=1}=0.2, P{X=1, Y=0}=0.3, P{X=1, Y=1}=0.1, P{X=2, Y=0}=0.2, P{X=2, Y=1}=0.1, 则Z=max{X,Y}的分布律中P{Z=1}=() A. 0.1 B. 0.3 C. 0.4 D. 0.6