举一反三
- 设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为______. A: α1,α2,α3 B: α1+α2,α2+α3,α3+α1 C: α2,α3,α4或α1,α2,α4 D: α1+α2,α2+α3,α3+α4,α4+α1
- 设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是(). A: α1+α2,α2+α3,α3一α1 B: α1+α2,α2+α3,α1+2α2+α3 C: α1+2α2,2α2+3α3,3α3+α1 D: α1+α2+α3,2α1—3α2+22α3,3α1+5α2—5α3
- 设α1,α2,α3,α4是齐次方程组Ax=0的基础解系,下列解向量组也是方程组Ax=0的基础解系的是______。 A: α1+α2,α2+α3,α3+α4,α4+α1 B: α1+α2,α2+α3,α3+α4,α4-α1 C: α1-α2,α2-α3,α3-α4,α4-α1 D: α1+α2,α2+α3,α3-α4,α4-α1
- 已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是() A: η1+η2,η2-η3,η3-η4,η4-η1 B: η1+η2,η2- η3,η3-η4,η4+η1 C: η1+η2,η2+η3,η3-η4,η4-η1 D: η1,η2,η3,η4的等价向量组
- 原方程组 x+y+z=1, (1) x+2y+3z=2 (2)两个方程相加得到新方程 2x+3y+4z=3 (3) 以下哪个说法不对: A: 方程组{(1),(2)}的解一定是方程(3)的解 B: 方程(3)与方程组{(1),(2)}同解 C: 方程组{(1),(3)}与{(1),(2)}同解 D: 方程组{(2),(3)}与{(1),(2),(3)}同解
内容
- 0
设α1,α2,α3,α4为四维非零列向量,A=[α1,α2,α3,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[-1,0,2,0]T,则方程组A*X=0的基础解系为______. A: α1,α2,a3 B: α1+α2,α2+α3,α3+α1 C: α2,α3,α4 D: α1+α2,α2+α3,α3+α4,α4+α1
- 1
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n-5,α1,α2,α3,α4,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是______. A: α1+α2,α2+α3,α3+α4,α4+α5,α5+α1 B: α1-α2,α2+α3,α3+α4,α4+α5,α5+α1 C: α1-α2,α2-α3,α3-α4,α4+α5,α5+α1 D: α1-α2,α2-α3,α3-α4,α4-α5,α5-α1
- 2
设三元非齐次线性方程组\(Ax=b\)的系数矩阵\(A\)的秩为2\(,\)且有\(\eta_{1},\eta_{2},\eta_{3}\)为方程组的解\(,\)已知\(\eta_{1}+\eta_{2}=(2,0,4)^T,\) \( \eta_{1}+\eta_{3}=(1,-2,1)^T,\)则方程组\(Ax=b\)的通解为\(( \quad )\)。
- 3
设n元线性方程组Ax=0的系数矩阵A的秩为n-3,且α1,α2,α3为线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( ). 未知类型:{'options': ['α1+α2,α2+α3,α3+α1', ' α2 -α1,α3 -α2,α1 -α3', ' 2α2 -α1,[img=16x41]17e0a8bd4180a46.png[/img]α3 -α2,α1 -α3', ' α1+α2+α3,α3-α2,-α1-2α3齐次线性anxingg'], 'type': 102}
- 4
设向量组α1=(1,-1,2,4)T,a2=(0,3,1,2)T,α3=(3,0,7,14)T,α4=(1,-2,2,0)T,α5=(2,1,5,10)T,则向量组α1,α2,α3,α4,α5的最大线性无关组是()。 A: α1,α2,α3 B: α1,α2,α4 C: α1,α4 D: α1,α2,α4,α5