证明: 域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中没有非平凡的零因子, 从而域一定是整环.
举一反三
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的有限扩张,证明[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是完备域充分必要条件为 $[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是完备域。
- 证明:在数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上,一个向量空间如果含有一个非零向量, 那么它一定含有无限多个向量。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵。证明:存在[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一个非零多项式[tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex],使得[tex=3.571x1.357]OOyEFi5Qx/r8c8gc6BAiHg==[/tex]。
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的有限扩张,证明[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]中存在关于[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的本原元素的充分必要条件是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]与[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]间只有有限个中间域。
- 令 [tex=12.071x2.786]u8TxporCqXrIJaXT4JUQiwf41Dyx87GWao3qqHnKGkkruJN6m2QPs4xV7d/8wh6Pg+R7E5oA28b624MjsQUzpx2w+V+Y1TCLoYRnbKJ31mnR+RNz2mToCVXDiQr5cwAjM1tFBllEnCswlt4NqZJXpQ==[/tex] 证明: [tex=0.643x1.0]A15DzQu7iMDGcxSH5TbCIQ==[/tex] 对于矩阵的加法与乘法成为一个域,并且域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 与复数域同构.