设[tex=15.143x1.571]E54eZ8R4U25cyKx0caDhv/ecp+XhuBvy8q3bDuZwl8iFl2hUEF+qiBPESPVImob1idcebmNK2IbzWrKPtNVZo9IFXVfNuEuFyIyMRzYmE3RX04u+OAcK2ms91Yi4jkXtyjHw3G4aYncetVlJRehvnQ==[/tex] 这是模 3 的高斯整环,其加法和乘法运算如同复数, 但系数要模 3. 试列出 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的乘法表. 并证明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是个 ( 有 9 个元素的) 域.
举一反三
- 设[tex=2.786x1.357]FjXX3zhvxUYhb/kCMCOvZw==[/tex] 是一个加群. 定义 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的乘法运算为[p=align:center][tex=8.929x1.214]mwVSR6rB8ETCmgrBOZBfKC4aHESn61kUbnYwMS+t5bgAmPHK5UFN6E/t4QuDSXF/[/tex]证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 关于加法和乘法构成一个环.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的环. 证明: 环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的可逆元全体 [tex=2.286x1.357]VSrq2EBbjY/lzOCsf2jcIg==[/tex] 关于环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的乘法构成群.
- 假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是无零因子环且只有有限个元素,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是域。