证明[tex=2.357x1.357]LUHeP9o7eqBTOkWbocGFoA==[/tex]与[tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex]同构.
举一反三
- 证明:在欧几里得空间[tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex]中,如果[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]与任意向量都正交,则[tex=2.214x1.0]sy42PnnVdoHye7UPuHKhig==[/tex]
- 试证明下列命题:设 [tex=3.143x1.214]AzD8UYoy+kTlHC4wZn4aJg==[/tex] 是 [tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex] 中的可测集. 若有 [tex=11.071x1.357]QURnCNizZmx2Wuk4uVBiIyPekrjdShOdEyaw5P27I4YKeyZK4m9Co5ygQczYHS/y[/tex], 则[tex=5.357x1.357]jdTEC/KQ2oT8vI09BgTXCVa4JDczCAwm3s5qm+UYPow=[/tex].
- 试证明下列命题:设 [tex=2.071x1.357]1f4Wyq/DKl1JkV1UemhujQ==[/tex] 是 [tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex] 上的非负可积函数,记 [tex=6.429x1.357]UCWsz1Po+HWMixdEjmHcxw1+jXlQFMVv4ObOR3MHKZM=[/tex] .[tex=15.786x1.5]C+kg99U+vZl/58Id7Cz3l1yol9E+7hwGbWUAjjc7zE+T5HeVGLzppLEWk7jX1VbC9amS5OoMgBvZrA5eSrfFXSaBhe0H5Na90EXH3KYAz9kSTP4oAhkLUOH6fMPdc5XHH+ICnaXDPkQvYtB4xNukqg==[/tex].
- 试证明下列命题:设 [tex=3.357x1.071]8kil1yT/0eFIrhCcZbOF0TSrZFmBG3cUFIqg+23g+3Y=[/tex] . 若存在 [tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex]中可测集 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex], 使得 [tex=5.714x1.357]p5gT9OrxH8U1pBSvSDq8vXUpRC84DVHfRAVPbuFE6D8=[/tex], 则 [tex=2.714x1.071]TcBwSKJYG/iJ8JiUR56l/foTWQ0hg+0yyhZOIJUtJHw=[/tex] , 且有 [tex=5.643x1.357]eRZvw7mNSg8M86oqzlp1Xw==[/tex] .
- 试证明下列命题:设 [tex=2.071x1.357]1f4Wyq/DKl1JkV1UemhujQ==[/tex] 是 [tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex] 上的非负可积函数,记 [tex=6.429x1.357]UCWsz1Po+HWMixdEjmHcxw1+jXlQFMVv4ObOR3MHKZM=[/tex] .设 [tex=9.357x1.5]DND0cv4XyUlyDAEjWqzpWPGZgtjLnSeEVoKZpYPf7ET+Z8yoF/5wWagAuhszGPOGcLomiuqw4mfYh4+BNa1IbfbNsXgpl0PmKbwlswJurrg=[/tex], 则[tex=14.286x1.357]Yt6cqBZEjYnKurWZbDk0jBUERgA6zDwyQpqSGH+VvDQ4FSqaSqy0rqiG5qDzB0QslKTwTXX6ZlnbKjUIY24ViVYKhoZAhYsBJJ7bUTF+xbEDiVxJlzvKk+WXNUmlzA7e[/tex].