证明[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]上一元多项式环[tex=2.0x1.357]VT6k/Ycgwo5CupacVLfyGw==[/tex]对由[tex=2.286x1.357]Vvyjxhe5OiAukpR2byoVCw==[/tex]生成的理想的商环 [tex=5.786x1.571]AgwELPgt4OvlzoHK2otUf76H0DaDnfeK3mIbp726k0azsEw8bwP3gvAZ9yEkGGkAxtv/2vDnUryrLaE2h4XGjw==[/tex]与复数域[tex=0.857x1.0]jDcYFmPc/8HN67Rd7RWDGQ==[/tex]同构.
举一反三
- 设[tex=2.0x1.357]VT6k/Ycgwo5CupacVLfyGw==[/tex]表示实数集[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]上的所有关于[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的一元多项式组成的集合,试验证:多项式的乘法运算对多项式的加法运算可分配。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 令 [tex=12.143x2.786]pSCOUldRRliBGKoKusoPeyxHVDDBCRvg2aLZ3lSfrRhdCkZgBgO3yIc6UVxx5cGgV4+C+kzcZOykQY2nRMMHv3wE2kHEj7z7C3axbIglwQOx1DMdPp/CG0Zh0xphA/bK1+mlRFIZa9Eo4nMouD3fMg==[/tex]证明复数域 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 作为实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 上的线性空间与 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 同构, 并且写出一个同构映射.
- 设h为X上的函数,证明下列两个条件等价。(1)h为一满射,(2)对任意X上的函数[tex=5.429x1.214]OREhy0bsXZWZ6y8PdI7nwHYlaKprN6KYnR/FCpmEbdk=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]