未知类型:{'options': ['若 [tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内连续,则 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex] 内有界', '若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内连续, 则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界', '若[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界, 则 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界', '若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界,则[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex] 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有界'], 'type': 102}
举一反三
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex] 内有定义,且函数[tex=2.786x1.286]bD81Z3kajoYwdWNaz1OIADthjhsSTTpdZcQcgAfqGWY=[/tex] 与 [tex=2.571x1.286]ApQyDMkDx929hzwydzjWKsIH1jYRw8atMs3NLz1MkYw=[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex] 内都是单调增加函数。证明:[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内为连续函数。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=8.286x2.643]tIomMAsesAy1VM7HugkvwpnbMTbOlxz11IyZXZRibeY0WQ870A9CYQOq2W1ZVgaX[/tex],证明在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内存在一点 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使[tex=3.857x1.286]0o6buAQ5WD2oecMXnej5rGJfy0hlAviIntaWqgT/AKA=[/tex]。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=8.571x2.571]UF7dBGCRcfNgGnC4UknKXyW5hXHGsttIjPyN2HaMghDH7B1vOhYBcqRzk9mKeton[/tex],证明:在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内至少存在一点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使[tex=3.643x1.286]zlTa8MtwhCDPYWZctn92XQ==[/tex]。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续, 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=8.0x3.0]NMeyz8ghtotq7DTsULLmBYirfEGxIEpcXYX8j8KlwM4i4oF6o2DP8HLv/ue3EX2NfR3RSORXmOJxm44uem5hHQ==[/tex],证明在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内至少存在一点 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使 [tex=3.857x1.286]0o6buAQ5WD2oecMXnej5rGJfy0hlAviIntaWqgT/AKA=[/tex]。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上可微,对于[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的每一个[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 的值都在开区间 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内, 且 [tex=3.929x1.286]0VLGTLK6v3MkNP58z7HiHRiYa+tAByiT7/p78X428Zo=[/tex], 证明在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内有且仅有一个 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],使[tex=3.786x1.286]a7syGVnHJ8vV4xZ+ta96jg==[/tex]。
内容
- 0
设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在其定义域上可导,若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是偶函数,证明[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]是奇函数;若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数,证明[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]是偶函数(即求导改变奇偶性)。
- 1
函数[tex=7.5x1.286]Lem/t5JVXaKdESbPkrxxW/TooHpEOSdyDLGlOe01o0I=[/tex]的极值点是 未知类型:{'options': ['[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]', '[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]', '[tex=2.143x1.286]xFRFgvSxDEv0XaioRgmbFw==[/tex]', '[tex=3.143x2.357]/Ct4zgqkDjOrCNyHxpQhxbM/w/6kzhRDzkJyw6jvc5bMbM6o6Eh3h/cCRAFie94N[/tex]'], 'type': 102}
- 2
证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]ujmU+pDh4daDjQKnDYPPYQ==[/tex]有界,则1) [tex=6.786x1.786]KudtCboTnQjWFHpKXwrGptU73jNG9Vls2iXguaYydoqanuSxWpW0frttnvlrANaa[/tex];2) [tex=7.071x1.786]+9ZHwtbIIao40hqodMStnSf58hBEP5JI7VoKmDZdQY11qBNAy+jzS3tSIlc8HeoE[/tex]。
- 3
设[tex=6.929x1.286]ZWhzhbVBPJtNuvBiOfrUeV+Kq4EQG6mlu/qdR6QEEfw=[/tex],且[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]可导,求[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]。
- 4
证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在开区间 [tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内可导且无界,则[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内也无界。