举一反三
- 设[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是一个素数. 证明:对任何正整数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex],都存在一个在域 [tex=1.071x1.286]bM7qNVIctMbDn6oefl1jzg==[/tex]上不可约的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式.
- 设[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是有限域,[tex=1.071x1.286]o47uln10KUnmSfJmS1m2kSpHLMLBfvRFmO/jeuKxjYc=[/tex]是[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]中素域,则[tex=3.286x1.071]GqCiqeeqnC8xs45a2MeVIfQRnBRuFbRwaHAvhJ/Il0w=[/tex],[tex=0.643x0.786]W9TCskxkagdDgWMvasdFzg==[/tex]在 [tex=1.071x1.286]o47uln10KUnmSfJmS1m2kSpHLMLBfvRFmO/jeuKxjYc=[/tex]上是代数元。
- 设域[tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 没有不可离扩域. 证明, [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的任一代数扩域都没有不可离扩域
- 证明:一个特征为 0 的域一定含有一个与有理数域同构的子域;一个特征为 [tex=1.786x1.214]vlyQkjBiFCEd/t2QYNEcjQ==[/tex]的域一定含有一个与[tex=1.071x1.286]fXbjjdkgwoMsco55Pt0BWQ==[/tex]同构的子域。
- 找一个域 [tex=0.929x1.214]+1wJql5cfr8bn3vbFZ622w==[/tex]使 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 有一个有限扩域 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex], 而[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 不是[tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的单扩域.
内容
- 0
证明,有理数域[tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]上多项式 [tex=2.286x1.357]sp9dySalToVvVo68uJ+aWw==[/tex] 的分裂域是一个单扩域[tex=2.357x1.357]A2Zflt9k8vIus35U/ivdXg==[/tex]其中 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是 [tex=2.286x1.357]sp9dySalToVvVo68uJ+aWw==[/tex] 的一个根.
- 1
证明[tex=5.214x1.5]so+aUUJjMAVzC0SaFc2IOd3gFB7+GqVhy8ULYOrOIdds00WRM4SbIUlWBP9Ns+AM[/tex]这个域对它所包含的素域是单代数扩张。
- 2
设 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 是有限域, 则 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 有一个同构于 [tex=1.071x1.286]o47uln10KUnmSfJmS1m2kSpHLMLBfvRFmO/jeuKxjYc=[/tex] 的素子域 [tex=1.143x1.0]RJKRNsUdTBDg78oiJ8PTTA==[/tex] 从而 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的有限维向量空间. 由此证明: 存在正整数 [tex=0.929x1.0]4YXOg6rmHsFEwpxRSup8Rw==[/tex] 使得 [tex=3.214x1.357]rNRxYHjQdO7YkZT6AAmseg==[/tex]
- 3
设[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是系数属于域[tex=1.071x1.286]Yf9vilsri8269WAMogYgOQ==[/tex]([tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为素数)的一个多项式, 证明[p=align:center][tex=5.929x1.357]Ny0A5/F+eAq0do7xYJbhJFg93F1cOmaZyx83cJIoRCU=[/tex].
- 4
设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是域 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]的代数扩域,且 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex] 上每一多项式[tex=2.143x1.357]rByUrHVBTQB2C43DbY7ymQ==[/tex]在 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex] 上的分裂域都是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]的子域,证明: [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是代数闭域.