若f(x)在[a,b]连续,在(a,b)内可导,则至少存在一点c属于[a,b],使得f’(c)=(f(b)-f(a))/(b-a)。()
举一反三
- 如果函数f(x)在区间[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ∈(a,b),使得f(b)-f(a)=______.
- 如果函数在[ a,b]上连续,则至少存在一点c, 使得[a, b]上的定积分=f( )(b-a).
- 设f(x)在[a,b]上连续,在(a,b)内可导(0<a<b),证明:在(a,b)内至少有一点c,使得2c[f(b)-f(a)]=fˊ(c)(b2-a2).
- 设ab>0,f(x)在[a,b]上连续,在(a,b)内可导,证明:存在ε∈(a,b),使得设f(x)在[a,b]上连续,在(a,b)设f(x)在[a,b]上连续,在(a,b)内连续可导,x。∈(a,b)是f(x)的唯一驻点.若f(x。)是极小值,证明:x∈(a,x。)时,fˊ(x)<0;x∈(x。,b)时,fˊ(x)>0
- f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,那么至少存在一点β,使f'(β)=-f(β)成立。