A: \( ( 2, - 2) \)
B: \( ( 2, 2) \)
C: \( ( - 2, - 2) \)
D: \( ( - 2, 2) \)
举一反三
- 函数\( u = 2xy - {z^2} \)在点\( (1, - 1,1) \)处沿\( \overrightarrow l = (1,2, - 2) \)方向的方向导数是 ______
- 函数\( z = {x^2} - xy + {y^2} \)在点\( (1,2) \)处最大的方向导数=______ 。
- \( z = {x^2} +{y^2} \)在点\( (1,2) \)处的最大方向导数=( )。 A: \( \sqrt 5 \) B: \( 2\sqrt 5 \) C: \( 2\sqrt 3 \) D: \( \sqrt 3 \)
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 如果可微函数$f(x,y)$在点$(1,2)$处的从点$(1,2)$到点$(2,2)$方向的方向导数为$2$,从点$(1,2)$到点$(1,1)$方向的方向导数为$-2$,则(1)这个函数在点$(1,2)$处的梯度为( ) A: $(2,-2)$ B: $(2,2)$ C: $(-2,2)$ D: $(-2,-2)$
内容
- 0
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
- 1
函数z=xsiny在点(1,π/4)处的两个偏导数分别为 A: √2/2,√2/2 B: √2/2,-√2/2 C: -√2/2,-√2/2 D: -√2/2,√2/2
- 2
以点\( (2, - 1,2) \) 为球心,3为半径的球面方程为( ) A: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
- 3
\( z = x{y^2} \)在点 \( ( - 1,1) \)处最大的方向导数=( )。 A: \(1\) B: \( \sqrt 2 \) C: \( \sqrt 3 \) D: \( \sqrt 5 \)
- 4
\( u = 2{x^2}yz \)在点 \( (1,1,1) \)处最大的方向导数 =( )。 A: \( 24\) B: \( 2\sqrt 6 \) C: \( 2\sqrt 3 \) D: \( \sqrt 6 \)