• 2022-07-24
    圆形薄板,半径为[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex] ,边界简支,受均布荷载[tex=0.857x1.286]E0B9SCJwm/dZNyCBEQCuRA==[/tex].试求挠度及弯矩,并求出它们的最大值。
  • 【解】对于受均布荷载[tex=2.071x1.0]jaHV9yTklTlfTTfSnZMd8Q==[/tex] 的薄板, 由教材[tex=2.286x1.214]LNpLXGaqBMV+ZZYSr7DV5A==[/tex] 中式[tex=1.286x1.357]cbraPJhSpECgKKWF0EooUQ==[/tex], 知挠度的解 答为[tex=17.357x2.143]J/SePDA4w7xHTk6GrEKkLgTrbp0T0OmhPJ0egg0o4hj3APJDlNjFMu7Pwm/7jl2Q78TEzedEma1OKFefDnAoSgHum1qeA33R16hVGqnno2RbUkJc7xVHG/k3wV3DWJh7[/tex][tex=1.286x1.286]+3R6zaTAs82WGgFzLz6KQw==[/tex]本题中的薄板无孔,仅有外边界 [tex=1.857x1.0]XeHsVyT1+GhdQPSynI/o0A==[/tex]的边界条件。此时,应考虑薄板中心点 [tex=2.643x1.357]xXm8yNIKhto0Rw0G/Li+Ow==[/tex] 处,挠度和内力不可能为无限大,但式[tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex]中的第一,第二项奖项为无限大, 因此,常数 [tex=1.071x1.214]PQfcN+T9uNUhIfQF5NHXvg==[/tex]和[tex=1.071x1.214]SwObJqa7EvSskcneKCBGew==[/tex] 都应等于筙。于匙得[tex=9.286x2.143]MpEHqRbZCVHxa2vnLJZH2bt+V1xlAuhT2NWzWY40rdQ2+gK/tDcG4PW9WZMjri/R9Cw6j8dOpUczGdZ71LBm1A==[/tex][tex=1.143x1.286]VwSo6Wt3iprR6JMvid6rGw==[/tex]由教材中式[tex=3.071x1.357]e4fbjZL2FcaKHv/IXm6B9Q==[/tex]得出资矩和扭矩[tex=16.786x6.5]GE56u9QCDTqcLxZ66HADysctlwKaoUbN1pINFWMSkAhSBXNhk3UyMKSrpMlo0ujo9ZJvqggwYLojCSjhYgFSYg4vFj3MLxBjfUpdbcDDj/8pU/JcK7H+iF93RoBrUhYJoc0GTNbBWnxI18oNPeamj0ly8mcFclk+HS9CMwWhJLrbrX+SimZgXvA+8aFzvnt+2sYVLMG8MWXaFrGZMJbMxbFIybEPvEIccw1OQgFlkJxMUQpvsBWAjJjQK2Vo9H+TMPMhF1HYOcUkyxpgdrV4nQ==[/tex]半径为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的蔣板具有简支边,则边界条件为[tex=10.429x1.571]iZ+HdhcMYHDVW+35Q+Ll1n9fq3Ck5VBHBYqhRw0RVd6tBi/R1jmUL9bb6lYVvGe3L5TER4n4ZOWRy/1mHQrtog==[/tex]将式[tex=1.143x1.286]VwSo6Wt3iprR6JMvid6rGw==[/tex]和式[tex=1.143x1.286]tGJDbfaTVMs3hkpOmxckgA==[/tex]的第一式代人上面边界条件,得[tex=14.286x4.929]rZM5/OPAdr7aX+kNl9iwpIP8qQm1JZaFPjLhtc3wUtCx7XI9Az6YoIu+VEBpYQz0VqRN2iurWlg/yPNrmLjon93dbi7eph9w5vdztwKL4gTKtz5LF3bjmfjOS1gmgV+Yp1FEZsHnmYqNALbWmGR1CJTyBVKZOAtl5D3crvkD0bSEGht6IINJcLmUTt7TIfc0[/tex]由此求得[tex=15.929x2.786]Am5OKt6v4g3JBdQgsfQg//TpAyTzbT4VYxv2jAAUtWW9kaz6UQVY95VzBlNCuaFKphyCOeLmc8pz+v0eXvgV+OmStm0Ti0UIOz5BTqU7R1z1SUHZzxXtPFQCz3G2R7gsLcAr7CiPNpnmvxO4UHTPxA==[/tex]代人式 [tex=1.143x1.286]VwSo6Wt3iprR6JMvid6rGw==[/tex] 及式[tex=1.143x1.286]tGJDbfaTVMs3hkpOmxckgA==[/tex], 即得[tex=21.643x8.357]GE56u9QCDTqcLxZ66HADytnQpyDgKmCNDDs+KYTBw/cSgiqgcTTygHeF91hVcVl9Lc5Bnm9VMQ6X0hUI+w+cMeonHeqnvYVxIYAPKvFRRY3ZlZ5joaow4PkxuXCdhv8rvaHGOmhui5gDnXpFq0v7S1PaxWK3rDu75uG3iABC4ZWMp3PPe6+b2ujP7dBjyyFB8Z4G2DPi2A0TRnKMppjymRVh6FNUC2GQuXIsllzg46AUmV/itQ0xGn2j9d7SiubZ/m3K/Vo9006yJQF5m4qq+3kWFX2v/YRPOQAga2y76Bo0xzEsBucqIbEz4Jtvrx1uP2+WhUSpCioy7ISjuOUb/7EyTOxvvwcR40k8thT3ZngNIzmnv/Hu1gGKlO05bedujaSc6KqSpW4RWVF+ARMHluQNoKIh4JFwqjphh0wcDzw=[/tex]在[tex=1.857x1.214]A0lhDwNm6UlxpL9GPs1FMg==[/tex]处,挠度和弯矩有最大值[tex=16.214x2.786]knhR8hVLbjUbY+J5qYq3Zd3z/yoe6eLjrdAJu0ScCgOl6m9UvbnAPumsrPf9M1DCWN3Mhp1zXNdqGIcmO+5sHuxaMn4Uj7JfCNZj734DMFrZIFqrruYW48Ig7yTnZqBvUVUi4hZaRe5mDkKbg3TOxA==[/tex]

    内容

    • 0

       两端简支的等截面梁,受均布荷载[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex] 作用,试求挠度[tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex].

    • 1

      求载流为[tex=1.357x1.286]Cs55zelIuSdaKurvw489Fg==[/tex]半径为[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的圆形导线中心的磁感应强度。

    • 2

      四边简支的矩形薄板如图 10-20 所示,受有荷载[tex=7.857x2.143]hyu3ZYL0V9pBVIE2yem2F9F8uElAK3qhCawTID5I9xHhaTfitlQ5TPSxDI7RuWmuPEPDVn85/T7QzdEcgqQ07g==[/tex]试证: [tex=8.214x2.143]NLU9FBEQoKogJdPAuFxNhJNDasHwZr/+SO5ih/7KkB8bglYCueJ0NrkuQ8AXRu26[/tex] 能满足一切条件,并求出挠度、弯矩及反力,以及它们的最大值。[img=230x246]17959f051ea77c4.png[/img]

    • 3

      求半径为[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的球面的面积 . 

    • 4

      设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]是有理数,满足[tex=9.214x2.929]wLLnuhaTkejykG34Lose4Gk3bDdglgIOUPyksgtxtXmt1sHAbktViJ8p1ePynplK3+wsNPKnCMhi2L94ONh39NTRjZdrdBEvRo1TQVd9L2o=[/tex],求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]的值。