证明:对函数[tex=8.0x1.5]UYRzGvpGHjj237vXD1ENSo3Z2Ph7ox/FFeoeGeBDLZY=[/tex]在某区间上应用Lagrange中值定理所求得的点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex]是区间的中点,其中[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex],[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]与[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]是常数,[tex=2.357x1.214]I6zYWvZMqjbeoURtA0cQHQ==[/tex]
举一反三
- 试找出一个含命题变元[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]、[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的复合命题,在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]、[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]中恰有两个为真时该命题为真,否则为假。
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。证明:[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=1.286x1.357]1iCPfmaumBwudqtdwCwPlQ==[/tex]等价
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。证明[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]逻辑等价于[tex=3.571x1.357]vxXf8ii7O1D1363SuS1cCA==[/tex]
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。只用运算符[tex=0.5x1.214]HncBEvf7QrpbVngWgJZA0g==[/tex]构造一个等价于[tex=2.0x1.0]HFqbj5uZFZVrH/+vs9S2/A==[/tex]的命题
- 设[tex=5.929x1.071]gAFI4ZzNAmjFfJAphmTsRQ==[/tex],若[tex=7.786x1.357]09fTpcwFMVcu1qrv9hyVbjaVP6Nu0Q7b0o9JCaEhfzk=[/tex],[tex=7.786x1.357]17Fg+KbtgLZdNaerla1J+g==[/tex],[tex=7.714x1.357]GzWWzGNDry0+/hdju2Gv5Q==[/tex],那么[tex=0.571x0.786]/uIIzJZ/1DPgc5sOsRpAXQ==[/tex],[tex=0.571x1.0]Tr41q2//n6lfFMLRmh8s0w==[/tex],[tex=0.5x0.786]rGd4FFr4Zsu+cuz6gxITMA==[/tex]的大小关系为 A: x<y<Z B: y<z<x C: z<x<y D: z<y<x E: 不能确定